Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin s...Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin slits can be regarded as a new breed of optical elements for efficient focusing and guiding of intense laser pulse.The fundamental physics of intense laser interaction with thin slits is studied,and it is revealed that relativistic effects can lead to enhanced laser focusing far beyond the pure diffractive focusing regime.In addition,the interaction of an intense laser pulse with periodic thin slits makes it feasible to achieve multifold enhancement in both laser intensity and energy transfer efficiency compared with conventional waveguides.These results provide a novel method for manipulating ultra-intense laser pulses and should be of interest for many laser-based applications.展开更多
The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni...The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni_(40)Co_(30)Cr_(20)Al_(5)Ti_(5)MEA was successfully fabricated.Through the well-designed mechan-ical heat treatment processing,we introduced a heterogeneous grain structure comprising 67.4%fine grain and 32.6%coarse grain.Additionally,heterogeneous size L12 phases consisting of 18.7%submicron precip-itates and 11.7%nano-sized precipitates,were incorporated into the alloy.Tensile tests conducted at room temperature revealed that the double heterogeneous structure alloy demonstrated remarkable strength–ductility synergy.It exhibited a yield strength of 1200 MPa,an ultimate tensile strength of 1560 MPa and a total elongation of 33.6%.The exceptional strength of the alloy can be primarily attributed to heteroge-neous deformation induced strengthening,grain boundary strengthening and precipitation strengthening.The excellent ductility is mainly attributed to the high-density stacking faults and Lomer–Cottrell locks.This study not only contributes to the clarification of the strengthening and deformation mechanism of double heterogeneous structure alloys but also provides an effective strategy for the development of high-performance alloys with high strength and ductility.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)...Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)Ti_(4)Mo_(1)MPEA obtained by thermo-mechanical processing.Electron microscopy charac-terization reveals that the dual-morphology B2 precipitates are either recrystallized B2 particles formed at the grain boundaries or triple junctions with recrystallization process,or rod-like within the non-recrystallized FCC matrix.The dual-morphology B2 precipitates enhance the yield strength and ultimate tensile strength up to 1120 MPa and 1480 MPa,respectively.This work suggests the mechanical proper-ties of the alloy can be optimized by B2 precipitation strengthening to meet the needs of engineering applications.展开更多
The trade-off relation between the strength and the electrical conductivity has been a Iong-standing dilemma in metallic materials. In the study, three key principles, i.e.elongated grains, sharp texture and nano-scal...The trade-off relation between the strength and the electrical conductivity has been a Iong-standing dilemma in metallic materials. In the study, three key principles, i.e.elongated grains, sharp texture and nano-scale precipitates, were presented for preparing Al wire with high strength and high electrical conductivity based on the specially designed experiments for breaking the mutually exclusive relation between the strength and the electrical conductivity. The results show that the elongated grains could lead to a higher electrical conductivity in Al wire without sacrificing the strength;while, the <111> sharp texture can efficiently strengthen the Al wire without influencing the electrical conductivity. Furthermore, nano-scale precipitates with proper size can simultaneously improve the strength and electrical conductivity of Al alloy wire. Under the guidance of the above three key principles, Al wires with high strength and high conductivity were prepared.展开更多
Common collectors for rare earth mineral(REM) flotation,which include carboxylates and hydroxamates,face problems such as being non-selective and sensitive to impurity ions.A type of ionic liquid(IL),tetraethylammoniu...Common collectors for rare earth mineral(REM) flotation,which include carboxylates and hydroxamates,face problems such as being non-selective and sensitive to impurity ions.A type of ionic liquid(IL),tetraethylammonium mono-(2-ethylhexyl)2-ethylhexyl phosphonate([N_(2222)][EHEHP]),has been investigated previously for rare earth elements(REE) solvent extraction,and was proven to be selective and effective.In this work,[N_(2222)][EHEHP] was evaluated as a collector in bastnasite(a primary REM source for REE production) flotation for the first time.The results were compared with quartz and hematite,two common gangue minerals in REM deposits.Zeta potential measurements and Fouriertransform infrared spectroscopy(FT-IR) were completed to investigate the surface chemical properties involved in the flotation of these minerals using this collector.The findings were compared with microflotation results.FT-IR and zeta potential measurements suggest adsorption of the collector’s phosphonate group onto bastnäsite and hematite,likely through chemisorption;whereas for quartz,the minimum micro flotation recovery is likely due to no adsorption of IL on its surface.Micro flotation re sults show higher collectability of [N_(2222)] [EHEHP] for hematite than bastnasite,the latter only shows appreciable recovery at pH 5 with elevated dosage of IL(500 g/t).To achieve better separation,a two-stage flotation scheme was designed and evaluated by bench scale flotation on a synthetic mineral mixture.The concentrates and tails were analyzed by magnetic separation,and it is found that bastnasite recovery over 90% with maximum upgrade ratio 1.7 can be achieved with elevated collector dosage.展开更多
The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress p...The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
Owing to their ultra-high accelerating gradients,combined with injection inside micrometer-scale accelerating wakefield buckets,plasma-based accelerators hold great potential to drive a new generation of free-electron...Owing to their ultra-high accelerating gradients,combined with injection inside micrometer-scale accelerating wakefield buckets,plasma-based accelerators hold great potential to drive a new generation of free-electron lasers(FELs).Indeed,the first demonstration of plasma-driven FEL gain was reported recently,representing a major milestone for the field.Several groups around the world are pursuing these novel light sources,with methodology varying in the use of wakefield driver(laser-driven or beam-driven),plasma structure,phase-space manipulation,beamline design,and undulator technology,among others.This paper presents our best attempt to provide a comprehensive overview of the global community efforts towards plasma-based FEL research and development.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFA1603300)the National Natural Science Foundation of China(Grant Nos.12175154,12205201,12005149,and 11975214)+1 种基金the Shenzhen Science and Technology Program(Grant No.RCYX20221008092851073)used under UK EPSRC Contract Nos.EP/G055165/1 and EP/G056803/1.
文摘Slits have been widely used in laser-plasma interactions as plasma optical components for generating high-harmonic light and controlling laser-driven particle beams.Here,we propose and demonstrate that periodic thin slits can be regarded as a new breed of optical elements for efficient focusing and guiding of intense laser pulse.The fundamental physics of intense laser interaction with thin slits is studied,and it is revealed that relativistic effects can lead to enhanced laser focusing far beyond the pure diffractive focusing regime.In addition,the interaction of an intense laser pulse with periodic thin slits makes it feasible to achieve multifold enhancement in both laser intensity and energy transfer efficiency compared with conventional waveguides.These results provide a novel method for manipulating ultra-intense laser pulses and should be of interest for many laser-based applications.
基金supported by the National Key R&D Program of China(No.2022YFA1603800)the National Natural Science Foundation of China(No.12274362)the Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.216Z1012G)。
文摘The application of single-phase face-centered cubic(FCC)medium entropy alloys(MEAs)in the engi-neering industry is often hindered by the challenge of insufficient strength.In this study,a novel non-equiatomic ratio Ni_(40)Co_(30)Cr_(20)Al_(5)Ti_(5)MEA was successfully fabricated.Through the well-designed mechan-ical heat treatment processing,we introduced a heterogeneous grain structure comprising 67.4%fine grain and 32.6%coarse grain.Additionally,heterogeneous size L12 phases consisting of 18.7%submicron precip-itates and 11.7%nano-sized precipitates,were incorporated into the alloy.Tensile tests conducted at room temperature revealed that the double heterogeneous structure alloy demonstrated remarkable strength–ductility synergy.It exhibited a yield strength of 1200 MPa,an ultimate tensile strength of 1560 MPa and a total elongation of 33.6%.The exceptional strength of the alloy can be primarily attributed to heteroge-neous deformation induced strengthening,grain boundary strengthening and precipitation strengthening.The excellent ductility is mainly attributed to the high-density stacking faults and Lomer–Cottrell locks.This study not only contributes to the clarification of the strengthening and deformation mechanism of double heterogeneous structure alloys but also provides an effective strategy for the development of high-performance alloys with high strength and ductility.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金supported by the Central Guidance on Local Science and Technology Development Fund of Hebei Province(No.216Z1012G)the National Natural Science Foundation of China(No.12174274).
文摘Precipitation strengthening provides one of the most widely-used mechanisms for strengthen-ing multi-principal-element alloys(MPEAs).Here,we report dual-morphology B2 precipitates in Co_(36)Cr_(15)Fe_(18)Ni_(18)Al_(8)Ti_(4)Mo_(1)MPEA obtained by thermo-mechanical processing.Electron microscopy charac-terization reveals that the dual-morphology B2 precipitates are either recrystallized B2 particles formed at the grain boundaries or triple junctions with recrystallization process,or rod-like within the non-recrystallized FCC matrix.The dual-morphology B2 precipitates enhance the yield strength and ultimate tensile strength up to 1120 MPa and 1480 MPa,respectively.This work suggests the mechanical proper-ties of the alloy can be optimized by B2 precipitation strengthening to meet the needs of engineering applications.
基金financially supported by the State Grid Corporation of China (No. 52110416001z)the National Natural Science Foundation of China (No. 51331007)
文摘The trade-off relation between the strength and the electrical conductivity has been a Iong-standing dilemma in metallic materials. In the study, three key principles, i.e.elongated grains, sharp texture and nano-scale precipitates, were presented for preparing Al wire with high strength and high electrical conductivity based on the specially designed experiments for breaking the mutually exclusive relation between the strength and the electrical conductivity. The results show that the elongated grains could lead to a higher electrical conductivity in Al wire without sacrificing the strength;while, the <111> sharp texture can efficiently strengthen the Al wire without influencing the electrical conductivity. Furthermore, nano-scale precipitates with proper size can simultaneously improve the strength and electrical conductivity of Al alloy wire. Under the guidance of the above three key principles, Al wires with high strength and high conductivity were prepared.
基金Project supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)Avalon Advanced Materials Inc.through the Collaborative Research and Development(CRD)Program(CRDPJ 44537-12)。
文摘Common collectors for rare earth mineral(REM) flotation,which include carboxylates and hydroxamates,face problems such as being non-selective and sensitive to impurity ions.A type of ionic liquid(IL),tetraethylammonium mono-(2-ethylhexyl)2-ethylhexyl phosphonate([N_(2222)][EHEHP]),has been investigated previously for rare earth elements(REE) solvent extraction,and was proven to be selective and effective.In this work,[N_(2222)][EHEHP] was evaluated as a collector in bastnasite(a primary REM source for REE production) flotation for the first time.The results were compared with quartz and hematite,two common gangue minerals in REM deposits.Zeta potential measurements and Fouriertransform infrared spectroscopy(FT-IR) were completed to investigate the surface chemical properties involved in the flotation of these minerals using this collector.The findings were compared with microflotation results.FT-IR and zeta potential measurements suggest adsorption of the collector’s phosphonate group onto bastnäsite and hematite,likely through chemisorption;whereas for quartz,the minimum micro flotation recovery is likely due to no adsorption of IL on its surface.Micro flotation re sults show higher collectability of [N_(2222)] [EHEHP] for hematite than bastnasite,the latter only shows appreciable recovery at pH 5 with elevated dosage of IL(500 g/t).To achieve better separation,a two-stage flotation scheme was designed and evaluated by bench scale flotation on a synthetic mineral mixture.The concentrates and tails were analyzed by magnetic separation,and it is found that bastnasite recovery over 90% with maximum upgrade ratio 1.7 can be achieved with elevated collector dosage.
基金financially supported by the State Grid Corporation of China (No. 52110416001z)the National Natural Science Foundation of China (No. 51331007)
文摘The evolution of microstructure in the drawing process of commercially pure aluminum wire (CPAW) does not only depend on the nature of materials, but also on the stress profile. In this study, the effect of stress profile on the texture evolution of the CPAW was systematically investigated by combining the numerical simulation and the microstructure observation. The results show that the tensile stress at the wire center promotes the formation of 〈111〉 texture, whereas the shear stress nearby the rim makes little contribution to the texture formation. Therefore, the 〈111 〉 texture at the wire center is stronger than that in the surface layer, which also results in a higher microhardness at the center of the CPAW under axial loading.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
文摘Owing to their ultra-high accelerating gradients,combined with injection inside micrometer-scale accelerating wakefield buckets,plasma-based accelerators hold great potential to drive a new generation of free-electron lasers(FELs).Indeed,the first demonstration of plasma-driven FEL gain was reported recently,representing a major milestone for the field.Several groups around the world are pursuing these novel light sources,with methodology varying in the use of wakefield driver(laser-driven or beam-driven),plasma structure,phase-space manipulation,beamline design,and undulator technology,among others.This paper presents our best attempt to provide a comprehensive overview of the global community efforts towards plasma-based FEL research and development.