期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
SF-CNN: Deep Text Classification and Retrieval for Text Documents 被引量:2
1
作者 r.sarasu K.K.Thyagharajan N.R.Shanker 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1799-1813,共15页
Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents... Researchers and scientists need rapid access to text documents such as research papers,source code and dissertations.Many research documents are available on the Internet and need more time to retrieve exact documents based on keywords.An efficient classification algorithm for retrieving documents based on keyword words is required.The traditional algorithm performs less because it never considers words’polysemy and the relationship between bag-of-words in keywords.To solve the above problem,Semantic Featured Convolution Neural Networks(SF-CNN)is proposed to obtain the key relationships among the searching keywords and build a structure for matching the words for retrieving correct text documents.The proposed SF-CNN is based on deep semantic-based bag-of-word representation for document retrieval.Traditional deep learning methods such as Convolutional Neural Network and Recurrent Neural Network never use semantic representation for bag-of-words.The experiment is performed with different document datasets for evaluating the performance of the proposed SF-CNN method.SF-CNN classifies the documents with an accuracy of 94%than the traditional algorithms. 展开更多
关键词 SEMANTIC classification convolution neural networks semantic enhancement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部