Aerobic granular sludge was cultivated in sequencing batch airlift reactors (SBAR) at 25, 30, and 35℃, respectively. The effect of temperature on the granules characteristics was analyzed and the microbial communit...Aerobic granular sludge was cultivated in sequencing batch airlift reactors (SBAR) at 25, 30, and 35℃, respectively. The effect of temperature on the granules characteristics was analyzed and the microbial community structures of the granules were probed using scanning electron microscope (SEM) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that 30℃ is optimum for matured granule cultivation, where the granules had a more compact structure, better settling ability and higher bioactivity, the oxygen utilization rate (OUR) reached 1.14 mg O2/(g MLVSS.min) with COD removal rate of 97% and TP removal rate of 75%. The removal efficiency of NH3-N increased from 68.5% to 87.5% along with the temperature increment from 25 to 35℃. The DGGE profiles revealed that the microbial community structure at 25℃ showed the least similarity with those at other temperatures. The sequencing results indicated that the majority of dominant microbes belonged to Actinobacteria and Proteobacterium. Thermomonas sp., Ottowia sp. and Curtobacteriurn ammoniigenes might play important roles at different temperatures, respectively.展开更多
Polyferric silicate sulfate (PFSS) with high concentration was prepared using the composite-poly method. The coagulation properties and mechanisms of this new complex were probed using TEM, Fe-Ferron timed complex-c...Polyferric silicate sulfate (PFSS) with high concentration was prepared using the composite-poly method. The coagulation properties and mechanisms of this new complex were probed using TEM, Fe-Ferron timed complex-colorimetric method, and infrared spectrum method. The results showed that the flocculating effect of polyferric silicate sulfate had an advantage over polyferric sulfate (PFS), as the optimum coagulation effect could be obtained when the Si/Fe mole ratio was 0.75 in accordance with its macrostructure of PFSS. According to the Fe-Ferron timed complex-colorimetric method, the Si species was mainly Sic, whereas, the Fe species were Fea and Fec in the copolymerization system. The infrared spectra indicated that the structure of these new flocculants was formed by polymers, mainly by olation, which was different from polyferric sulfate, and the vibration of M-OH-M of around 1100 cm^-1, also proved that there existed Fe-OH-Fe and its polymers in some forms.展开更多
Seventeen topsoil samples (9 urban, 4 suburban, 3 rural and 1 background) were collected in/around Harbin, a typical city in northeast of China, to measure concentration levels of organocholrine pesticides (OCPs) ...Seventeen topsoil samples (9 urban, 4 suburban, 3 rural and 1 background) were collected in/around Harbin, a typical city in northeast of China, to measure concentration levels of organocholrine pesticides (OCPs) in topsoil of Northeastern China in 2006. Hexachlorohexanes (HCH), dichlorodiphenyltrichloroethane (DDT), and hexachlorobenzene (HCB) were detected in soil samples with mean concentrations (in pg/g dry weight (dw)) of 7120, 5425, and 1039, respectively. The mean concentrations for other OCPs were very low, 4.8 pg/g dw for chlordane and 3.3 pg/g dw for endosulfan. Source identification analysis reveals that all OCPs found in soil samples were due to historical use of these chemicals or from other source regions through long- and short-range atmospheric transport. DDT was mainly used in the rural sites, whereas the sources of HCB, chlordane and endosulfan were mainly in the urban area. HCH was found almost equally in both urban and rural area. Soil concentrations of all detected OCPs, except HCHs, in and around Harbin were much lower than those in the southeast of China, which is expected since the use of these OCPs in the former was much lower than that in the latter, however higher HCH concentrations in and around Harbin than those found in most places of the Southeast China is not expected. It is suggested that high HCH concentration in soil of Northeast China was most likely due to long-range atmospheric transport (LRAT) from Southeast China and the cold condensation process.展开更多
This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybromi...This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybrominated diphenylethers (PBDEs 17, 28, 47, 66, 99, 100, 153, 154, and 183) ranged from 2.45 to 55.9 pg/g dry weight (dw) with a mean of 26.3 pg/g dw. These levels are very low comparing with those for some cities in Europe and USA. BDE 209 and hexabromocyclododecane were the two dominant congeners, with mean concentrations of 520 pg/g dw and 1750 pg/g dw, respectively. The concentrations of the total nine PBDE congeners clearly decreased from urban areas to background, but the compositions of individual congeners differed. Proportions of heavier congeners decreased while those of lighter congeners increased, along urban-rural-background transect, providing evidence for an urban fractionation effect. Correlation analysis indicated similar sources for PBDEs, hexabromocyclododecane, and 1,2-bis(2,4,6-tribromophenoxy)-ethane from urban areas but pentabromoethylbenzene was probably present due to long-range atmospheric transport. Principal component analysis was used to determine the characteristics of the relationships among these brominated flame retardants in the field.展开更多
Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 ...Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.展开更多
A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin...A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH4^+-N), turbidity and anionic surfactants (LAS) was investigated under different conditions. It was observed that the effluent COD, NH4^+-N, turbidity and LAS flocculated in ranges of 0.19-0.85 mg/L, 0.03-0.18 mg/L, 0.0-0.15 NTU and 0.0-0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L, 79.5-129.3 mg/L, 110-181.1NTU and 4.9-5.4 mg/L. The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH4^+-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH4^+-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH4^+-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.展开更多
Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly thro...Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly through the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures, the high block rate of membrane pore and the great quantity of filamentous bacteria at the external surface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in membrane bio-reactor.展开更多
To study the structure of microbial communities in the biological hydrogen produc-tion reactor and determine the ecological function of hydrogen producing bacteria,anaerobic sludge was obtained from the continuous sti...To study the structure of microbial communities in the biological hydrogen produc-tion reactor and determine the ecological function of hydrogen producing bacteria,anaerobic sludge was obtained from the continuous stirred tank reactor(CSTR)in different periods of time,and the diversity and dynamics of microbial communities were investigated by denaturing gra-dient gel electrophoresis(DGGE).The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day,and the ethanol type fermentation was established.After 28 days the structure of microbial community became stable,and the climax community was formed.Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria(Clostridium sp.and Ethanologenbacterium sp.),β-proteobacteria(Acidovorax sp.),γ-proteobacteria(Kluyvera sp.),Bacteroides(uncultured bacte-rium SJA-168),and Spirochaetes(uncultured eubacterium E1-K13),respectively.The hydrogen production rate increased obviously with the increase of Ethanologenbacterium sp.,Clostridium sp.and uncultured Spirochaetes after 21 days,meanwhile the succession of ethanol type fer-mentation was formed.Throughout the succession the microbial diversity increased however it decreased after 21 days.Some types of Clostridium sp.Acidovorax sp.,Kluyvera sp.,and Bac-teroides were dominant populations during all periods of time.These special populations were essential for the construction of climax community.Hydrogen production efficiency was de-pendent on both hydrogen producing bacteria and other populations.It implied that the co-metabolism of microbial community played a great role of biohydrogen production in the reactors.展开更多
In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewate...In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha-nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resis-tance and could still degrade methanol at pH 5.0.If the meth-anogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.展开更多
基金supported by the Hi-Tech Re-search and Development Program (863) of China (No.2002AA601310)the Natural Science Foundation ofHeilongjiang Province (No. E200824)
文摘Aerobic granular sludge was cultivated in sequencing batch airlift reactors (SBAR) at 25, 30, and 35℃, respectively. The effect of temperature on the granules characteristics was analyzed and the microbial community structures of the granules were probed using scanning electron microscope (SEM) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that 30℃ is optimum for matured granule cultivation, where the granules had a more compact structure, better settling ability and higher bioactivity, the oxygen utilization rate (OUR) reached 1.14 mg O2/(g MLVSS.min) with COD removal rate of 97% and TP removal rate of 75%. The removal efficiency of NH3-N increased from 68.5% to 87.5% along with the temperature increment from 25 to 35℃. The DGGE profiles revealed that the microbial community structure at 25℃ showed the least similarity with those at other temperatures. The sequencing results indicated that the majority of dominant microbes belonged to Actinobacteria and Proteobacterium. Thermomonas sp., Ottowia sp. and Curtobacteriurn ammoniigenes might play important roles at different temperatures, respectively.
文摘Polyferric silicate sulfate (PFSS) with high concentration was prepared using the composite-poly method. The coagulation properties and mechanisms of this new complex were probed using TEM, Fe-Ferron timed complex-colorimetric method, and infrared spectrum method. The results showed that the flocculating effect of polyferric silicate sulfate had an advantage over polyferric sulfate (PFS), as the optimum coagulation effect could be obtained when the Si/Fe mole ratio was 0.75 in accordance with its macrostructure of PFSS. According to the Fe-Ferron timed complex-colorimetric method, the Si species was mainly Sic, whereas, the Fe species were Fea and Fec in the copolymerization system. The infrared spectra indicated that the structure of these new flocculants was formed by polymers, mainly by olation, which was different from polyferric sulfate, and the vibration of M-OH-M of around 1100 cm^-1, also proved that there existed Fe-OH-Fe and its polymers in some forms.
基金supported by the Heilongjiang Province Postdoctoral Research Funding (No AUGA41001074)the State Key Lab of Urban Water Resource and Envi-ronment, Harbin Institute of Technology (No 2008DX01)
文摘Seventeen topsoil samples (9 urban, 4 suburban, 3 rural and 1 background) were collected in/around Harbin, a typical city in northeast of China, to measure concentration levels of organocholrine pesticides (OCPs) in topsoil of Northeastern China in 2006. Hexachlorohexanes (HCH), dichlorodiphenyltrichloroethane (DDT), and hexachlorobenzene (HCB) were detected in soil samples with mean concentrations (in pg/g dry weight (dw)) of 7120, 5425, and 1039, respectively. The mean concentrations for other OCPs were very low, 4.8 pg/g dw for chlordane and 3.3 pg/g dw for endosulfan. Source identification analysis reveals that all OCPs found in soil samples were due to historical use of these chemicals or from other source regions through long- and short-range atmospheric transport. DDT was mainly used in the rural sites, whereas the sources of HCB, chlordane and endosulfan were mainly in the urban area. HCH was found almost equally in both urban and rural area. Soil concentrations of all detected OCPs, except HCHs, in and around Harbin were much lower than those in the southeast of China, which is expected since the use of these OCPs in the former was much lower than that in the latter, however higher HCH concentrations in and around Harbin than those found in most places of the Southeast China is not expected. It is suggested that high HCH concentration in soil of Northeast China was most likely due to long-range atmospheric transport (LRAT) from Southeast China and the cold condensation process.
基金supported by the Heilongjiang Province Postdoctoral Research Funding (No. AUGA41001074)
文摘This study reports the presence of brominated flame retardants in the topsoil in and around Harbin, a city in northeastern China. Samples of soil were collected from 17 locations in 2006, and the levels of 9 polybrominated diphenylethers (PBDEs 17, 28, 47, 66, 99, 100, 153, 154, and 183) ranged from 2.45 to 55.9 pg/g dry weight (dw) with a mean of 26.3 pg/g dw. These levels are very low comparing with those for some cities in Europe and USA. BDE 209 and hexabromocyclododecane were the two dominant congeners, with mean concentrations of 520 pg/g dw and 1750 pg/g dw, respectively. The concentrations of the total nine PBDE congeners clearly decreased from urban areas to background, but the compositions of individual congeners differed. Proportions of heavier congeners decreased while those of lighter congeners increased, along urban-rural-background transect, providing evidence for an urban fractionation effect. Correlation analysis indicated similar sources for PBDEs, hexabromocyclododecane, and 1,2-bis(2,4,6-tribromophenoxy)-ethane from urban areas but pentabromoethylbenzene was probably present due to long-range atmospheric transport. Principal component analysis was used to determine the characteristics of the relationships among these brominated flame retardants in the field.
文摘Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0 - 24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m^3·d), -215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m^3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m^3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor·h and hydrogen percentage of 51% -53% in the biogas.
基金This work was supported by the Heilongjiang Natural Science Foundation(No.E2007-04)the National Natural Science Foundation of China(No.50908062)the State Key Laboratory of Urban Water Resource and Environment(No.HIT-QAK200808).
文摘A laboratory scale test was conducted in a combined membrane process (CMP) with a capacity of 2.91 m3/d for 240 d to treat the mixed wastewater of humidity condensate, hygiene wastewater and urine in submarine cabin during prolonged voyage. Removal performance of chemical oxygen demand (COD), ammonia nitrogen (NH4^+-N), turbidity and anionic surfactants (LAS) was investigated under different conditions. It was observed that the effluent COD, NH4^+-N, turbidity and LAS flocculated in ranges of 0.19-0.85 mg/L, 0.03-0.18 mg/L, 0.0-0.15 NTU and 0.0-0.05 mg/L, respectively in spite of considerable fluctuation in corresponding influent of 2120-5350 mg/L, 79.5-129.3 mg/L, 110-181.1NTU and 4.9-5.4 mg/L. The effluent quality of the CMP could meet the requirements of mechanical water and hygiene water according to the class I water quality standards in China (GB3838-2002). The removal rates of COD, NH4^+-N, turbidity and LAS removed in the MBR were more than 90%, which indicated that biodegradation is indispensable and plays a major role in the wastewater treatment and reuse. A model, built on the back propagation neural network (BPNN) theory, was developed for the simulation of CMP and produced high reliability. The average error of COD and NH4^+-N was 5.14% and 6.20%, respectively, and the root mean squared error of turbidity and LAS was 2.76% and 1.41%, respectively. The results indicated that the model well fitted the laboratory data, and was able to simulate the removal of COD, NH4^+-N, turbidity and LAS. It also suggested that the model proposed could reflect and manage the operation of CMP for the treatment of the mixed wastewaters in submarine.
基金863 Program(2002AA601310) Heilongjiang Province Natural Science Fund (E0323)+1 种基金 Education Bureau Projects of HeilongjiangProvince (10541031) Science and Technology Projects of Heilongjiang Province (GB04B717- 06)
文摘Sludge bulking property of membrane bio-reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in membrane bio-reactor increased slightly through the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures, the high block rate of membrane pore and the great quantity of filamentous bacteria at the external surface presented at the same time. Thus, plenty of methods should be performed to control sludge bulking once it happened in membrane bio-reactor.
基金This work was supported by the National Science Foundation for Distinguished Young Scholars(No.50125823)National Natural Science Foundation of China(Grant No.30470054)Key Project of Chinese National Programs for Fundamental Research and Development(No.G2000026402).
文摘To study the structure of microbial communities in the biological hydrogen produc-tion reactor and determine the ecological function of hydrogen producing bacteria,anaerobic sludge was obtained from the continuous stirred tank reactor(CSTR)in different periods of time,and the diversity and dynamics of microbial communities were investigated by denaturing gra-dient gel electrophoresis(DGGE).The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day,and the ethanol type fermentation was established.After 28 days the structure of microbial community became stable,and the climax community was formed.Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria(Clostridium sp.and Ethanologenbacterium sp.),β-proteobacteria(Acidovorax sp.),γ-proteobacteria(Kluyvera sp.),Bacteroides(uncultured bacte-rium SJA-168),and Spirochaetes(uncultured eubacterium E1-K13),respectively.The hydrogen production rate increased obviously with the increase of Ethanologenbacterium sp.,Clostridium sp.and uncultured Spirochaetes after 21 days,meanwhile the succession of ethanol type fer-mentation was formed.Throughout the succession the microbial diversity increased however it decreased after 21 days.Some types of Clostridium sp.Acidovorax sp.,Kluyvera sp.,and Bac-teroides were dominant populations during all periods of time.These special populations were essential for the construction of climax community.Hydrogen production efficiency was de-pendent on both hydrogen producing bacteria and other populations.It implied that the co-metabolism of microbial community played a great role of biohydrogen production in the reactors.
基金This work was supported by the Ministry of Construction of China,and we would like to thank the good cooperation of Wujin Fine Chemical Factory during the methanol wastewater treatment.
文摘In this study,the two-stage upflow anaerobic sludge blanket(UASB)system and batch experiments were employed to evaluate the performance of anaerobic digestion for the treatment of high concentration methanol wastewater.The acid resistance of granular sludge and methanogenic bacteria and their metabolizing activity were investigated.The results show that the pH of the first UASB changed from 4.9 to 5.8 and 5.5 to 6.2 for the second reactor.Apparently,these were not the advisable pH levels that common metha-nogenic bacteria could accept.The methanogenic bacteria of the system,viz.Methanosarcina barkeri,had some acid resis-tance and could still degrade methanol at pH 5.0.If the meth-anogenic bacteria were trained further,their acid resistance would be improved somewhat.Granular sludge of the system could protect the methanogenic bacteria within its body against the impact of the acidic environment and make them degrade methanol at pH 4.5.The performance of granular sludge was attributed to its structure,bacteria species,and the distribution of bacterium inside the granule.