A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in...A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in removing the redundant terms of the genera/form of the conserved densities but also in solving the conserved densities with the associated flux synchronously without using Euler operator. Furthermore, the program conslaw.mpl can be used to determine the preferences for a given parameterized nonlinear evolution systems. The code is tested on several well-known nonlinear evolution equations from the soliton theory.展开更多
The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, ...The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.展开更多
Some new structures and interactions of solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are revealed with the help of the idea of the bilinear method and variable separation approach. The soluti...Some new structures and interactions of solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are revealed with the help of the idea of the bilinear method and variable separation approach. The solutions to describe the interactions between two dromions, between a line soliton and a y-periodic soliton, and between two y-periodic solitons are included in our results. Detailed behaviors of interaction are illustrated both analytically and in graphically. Our analysis shows that the interaction properties between two solitons are related to the form of interaction constant. The form of interaction constant and the dispersion relationship are related to the form of the seed solution (u0, v0, w0 ) in Backlund transformation.展开更多
Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution...Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.展开更多
An improved algorithm for symbolic computations of polynomial-type conservation laws (PCLaws) of ageneral polynomial nonlinear system is presented.The algorithm is implemented in Maple and can be successfully usedfor ...An improved algorithm for symbolic computations of polynomial-type conservation laws (PCLaws) of ageneral polynomial nonlinear system is presented.The algorithm is implemented in Maple and can be successfully usedfor high-dimensional models.Furthermore,the algorithm discards the restriction to evolution equations.The programcan also be used to determine the preferences for a given parameterized nonlinear systems.The code is tested on severalknown nonlinear equations from the soliton theory.展开更多
A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lo...A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lou. These symmetries constitute an infinite-dimensional generalized w∞ algebra.展开更多
文摘A new algorithm for symbolic computation of polynomial-type conserved densities for nonlinear evolution systems is presented. The algorithm is implemented in Maple. The improved algorithm is more efficient not only in removing the redundant terms of the genera/form of the conserved densities but also in solving the conserved densities with the associated flux synchronously without using Euler operator. Furthermore, the program conslaw.mpl can be used to determine the preferences for a given parameterized nonlinear evolution systems. The code is tested on several well-known nonlinear evolution equations from the soliton theory.
基金The project supported by the Natural Science Foundation of Zhejiang Province of China under Grant No. Y604036 and State Key Laboratory of 0il/Gas Reservoir Geology and Exploitation "PLN0402" The authors would like to thank Prof. Sen-Yue Lou for his help and discussion.
文摘The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.
基金The project supported by the State Key Laboratory of 0il/Gas Reservoir Geology and Exploitation "PLN0402"The authors would like to thank Prof.Sen-Yue Lou for helpful discussions.
文摘Some new structures and interactions of solitons for the (2+1)-dimensional Nizhnik-Novikov-Veselov equation are revealed with the help of the idea of the bilinear method and variable separation approach. The solutions to describe the interactions between two dromions, between a line soliton and a y-periodic soliton, and between two y-periodic solitons are included in our results. Detailed behaviors of interaction are illustrated both analytically and in graphically. Our analysis shows that the interaction properties between two solitons are related to the form of interaction constant. The form of interaction constant and the dispersion relationship are related to the form of the seed solution (u0, v0, w0 ) in Backlund transformation.
基金National Natural Science Foundation of China under Grant No.10675065the Science Research Foundation of the Education Department of Zhejiang Province under Grant No.20070979+1 种基金the Natural Science Foundation of Zhejiang Province under Grant No.Y604036the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation\PLN0402
文摘Starting from the variable separation approach, the algebraic soliton solution and the solution describing the interaction between line soliton and algebraic soliton are obtained by selecting appropriate seed solution for (2+1)-dimensional ANNV equation. The behaviors of interactions are discussed in detail both analytically and graphically. It is shown that there are two kinds of singular interactions between line soliton and algebraic soliton: 1) the resonant interaction where the algebraic soliton propagates together with the line soliton and persists infinitely; 2) the extremely repulsive interaction where the algebraic soliton affects the motion of the line soliton infinitely apart.
基金the Scientific Fund of Education Department of Zhejiang Province of China under Grant No.20070979the National Natural Science Foundations of China under Grant Nos.10675065,90503006,and 10735030+1 种基金the State Basic Research Program of China (973 Program) under Grant No.2007CB814800the K.C.Wong Magna Fund in Ningbo University
文摘An improved algorithm for symbolic computations of polynomial-type conservation laws (PCLaws) of ageneral polynomial nonlinear system is presented.The algorithm is implemented in Maple and can be successfully usedfor high-dimensional models.Furthermore,the algorithm discards the restriction to evolution equations.The programcan also be used to determine the preferences for a given parameterized nonlinear systems.The code is tested on severalknown nonlinear equations from the soliton theory.
基金浙江省自然科学基金,浙江省宁波市博士基金,the State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation,Scientific Research Fund of Education Department of Zhejiang Province under
文摘A set of generalized symmetries with arbitrary functions of t for the Konopelchenko-Dubrovsky (KD)equation in 2+1 space dimensions is given by using a direct method called formal function series method presented by Lou. These symmetries constitute an infinite-dimensional generalized w∞ algebra.