The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed t...The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed to capture the rotation of the lobes. The numerical model is validated by comparing the simulated results with the literature values. The processes of suction, displacement, compression and exhaust are accurately captured in the transient simulation. The fluid pressure value remains in the range of inlet pressure value till the processes of suction and displacement are over. The instantaneous process of compression is accurately captured in the simulation. The movement of a particular working chamber is traced along the gradual degree of lobe’s rotation. At five different degrees of lobe’s rotation, pressure contour plots are reported which clearly shows the pressure values inside the working chamber. Each pressure value inside the working chamber conforms to the particular process in which the working chamber is operating. Finally, the power requirement at the shaft of rotation is estimated from the simulated values. The estimated value of power requirement is 3.61 BHP FHP whereas the same calculated theoretically is 3 BHP FHP. The discrepancy is attributed to the assumption of symmetry of blower along the thickness.展开更多
The investigation focuses on evaluating the effect of varying % of Red Mud (RM) reinforcement with Ordinary Portland Slag Cement (OPSC). Characterisation is done by adding 10%, 20%, 30%, 40% and 50% of RM by weight to...The investigation focuses on evaluating the effect of varying % of Red Mud (RM) reinforcement with Ordinary Portland Slag Cement (OPSC). Characterisation is done by adding 10%, 20%, 30%, 40% and 50% of RM by weight to OPSC. RM + OPSC composite mortars are made in an 8.5 × 5 × 4 cm<sup>3</sup> cast iron mould with external vibration keeping water-binder ratio 0.4 by weight. The mortars are cured in water for 28 days and their physio-chemical characteristics are investigated. Mortar performances like compressive strength, hardness, XRD, FTIR, SEM are diagnosed. The composite mortars cementing properties are compared with original OPSC. The result reveals the augmentation of RM with OPSC increases the hydration capacity of OPSC with improved compressive strength. The experimental optimization shows a maximum value up to 10% - 20% OPSC can be replaced by RM as filling material.展开更多
This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior a...This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior and extract the kinetic parameters of Jamadoba coal and its corresponding density sepa<span style="font-family:Verdana;color:#000000;">rated macerals. The weight loss was measured in air atmosphere. The coal </span><span style="font-family:Verdana;color:#000000;">samples used in this study were obtained from Jamadoba mines, Jharkhand. Sam</span><span style="font-family:Verdana;color:#000000;">ples of 35 mg and 200 μm mean size were subjected to synthetic air atmos</span><span style="font-family:Verdana;color:#000000;">pheres (21% O</span><sub><span style="font-family:Verdana;color:#000000;">2</span></sub><span style="font-family:Verdana;color:#000000;">). Heating rates of 2, 5 and 7</span><span style="font-family:;" "=""><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;"></span><span><span style="font-family:Verdana;color:#000000;">C/min were applied until the tempera</span><span style="font-family:Verdana;color:#000000;">ture reached 1400</span></span><span><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;">C, which was kept constant until burnout. Low heating</span></span><span><span style="font-family:Verdana;color:#000000;"> rate was preferred so that devolatilization occurs prior to ignition and </span><span style="font-family:Verdana;color:#000000;">combust</span><span style="font-family:Verdana;color:#000000;">ion. Derivative thermogravimetry (DTG) analysis method was applied to </span><span style="font-family:Verdana;color:#000000;">measure the weight changes and rates of weight loss used for calculating the kinetic parameters. The activation energy (</span><i><span style="font-family:Verdana;color:#000000;">E</span><sub><span style="font-family:Verdana;color:#000000;">a</span></sub></i><span style="font-family:Verdana;color:#000000;">) and pre-exponential factor were obtained </span><span style="font-family:Verdana;color:#000000;">from model-free methods by applying non-isothermal thermogravimetry</span><span style="font-family:Verdana;color:#000000;"> analysis.</span></span></span>展开更多
This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family...This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family:Verdana;">furnace</span><span style="font-family:Verdana;"> can be predicted. The method is based on a two-step approach. First, a </span><span style="font-family:Verdana;">first principle</span><span style="font-family:Verdana;"> simulation model of the blast furnace is used to generate data sets for the development of a linear model of pulverized coal injection rate. The data has been generated randomly in MATLAB software within the range of operating parameters (constraints) of the blast furnace. After </span><span style="font-family:Verdana;">that</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the coefficients of the function have been determined. The inputs and the resulting outputs formed the data on which the linear optimization model was developed. Next, the linear model was used for maximizing the pulverized coal rate injection by optimizing the other variables. Two operating Indian Blast Furnaces have been chosen to validate the optimization model.展开更多
Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile...Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.展开更多
The present experimental work reveals the surface characteristics like wettability, thermal and sliding wear behaviour of plasma-sprayed red mud (RM) coatings premixed with fly ash (FA). Varying weight % of FA (10, 20...The present experimental work reveals the surface characteristics like wettability, thermal and sliding wear behaviour of plasma-sprayed red mud (RM) coatings premixed with fly ash (FA). Varying weight % of FA (10, 20, 30 and 40)—RM composite powder is used as precursor for coating. Atmospheric plasma-sprayed coatings are developed at different operating power like 5 kW, 10 kW, 15 kW and 20 kW separately on mild steel substrate. Tribological behaviour viz. sliding wear properties are studied at distinct operating load (10N, 15N, 20N, 25N), speed (40 rpm, 50 rpm, 60 rpm, 70 rpm) and track diameter of 100 mm using a pin on disc tribometer for duration of 30 minutes with 3 minute gap period for each experiment. The DSC and TGA experiments of the coatings are performed to understand the high temperature application areas. The contact angle result signifies the wettability of the prepared coatings is principally a function of composition. The reaction of surface roughness and spraying power is in-significant on water contact angle (WCA). In conclusion, the sliding wear experiments are optimized by Taguchi method to ascertain the influencing parameter on wear.展开更多
The paper focuses on biodiesel production from kusum oil using esterification reaction followed by transesterification reaction in an in-house batch reactor setup. The effects of methanol to oil ratio (M/O), catalyst ...The paper focuses on biodiesel production from kusum oil using esterification reaction followed by transesterification reaction in an in-house batch reactor setup. The effects of methanol to oil ratio (M/O), catalyst amount (H2SO4 and methodoxide) and reaction temperature on acid value and fatty acid methyl esters (FAME) is studied. Product has been analysed using FTIR spectroscopy technique for confirmation of ester group in biodiesel. Experimental data was optimized by Taguchi analysis to conclude the optimum variable affecting the response. In both processes M/O ratio has the significant effect for biodiesel production. The obtained biodiesel properties are close to commercial diesel fuel and may be rated as an alternative to conventional diesel. The biodiesel production will enhance the maximum utilisation of forestry or agricultural products.展开更多
The present paper investigates the effect of strain rate on different tensile properties of high density polyethylene (HDPE) and polypropylene (PP) composite. Tensile specimens of virgin HDPE-PP composites are prepare...The present paper investigates the effect of strain rate on different tensile properties of high density polyethylene (HDPE) and polypropylene (PP) composite. Tensile specimens of virgin HDPE-PP composites are prepared via twin screw extruder and injection moulding methods as per ASTM D638-02a (Type-I);with gage length 50 mm, width 13 mm and thickness 3 mm. Composites are fabricated with PP as reinforcing agent at a loading rate of 10%, 20%, 30%, 40% and 50% by weight. Experiments are carried out at room temperature of 23°C and absolute humidity of 54% at a cross head speed of 30, 40, 50, 60 and 70 mm/min. Stress and strain values at yield and break points are reported. Atomic force microscopy (AFM) is used to study the distribution of polymer molecules in the mixture and surface roughness. As in last, experiments are designed by Taguchi optimization method to find out the dominating factors on tensile strength.展开更多
Polymer composites of virgin high density poly ethylene (HDPE) and virgin polypropylene (PP) are prepared. PP of weight% of 20, 30 and 50 are reinforced to HDPE in the form of pellets. They are converted into raw poly...Polymer composites of virgin high density poly ethylene (HDPE) and virgin polypropylene (PP) are prepared. PP of weight% of 20, 30 and 50 are reinforced to HDPE in the form of pellets. They are converted into raw polymer sheets using a two roll milling machine. The prepared raw sheets have undergone compression moulding to fabricate polymer sheets to study electrical properties like dielectric strength, surface resistivity and volume resistivity at atmospheric temperature and pressure. Result shows dielectric strength and volume resistivity decreases with addition of PP to HDPE, whereas surface resistivity increases. Crystal growth rate is observed using a cross polarised microscope (PLM). The microscopy results reveal, the PP crystallizes faster than HDPE and the growth rate declines for the polyblend;showing non-uniform and hazy spherulitic structure.展开更多
文摘The performance of a newly designed tri-lobe industrial lobe pump of high capacity is simulated by using commercial CFD solver Ansys Fluent. A combination of user-defined-functions and meshing strategies is employed to capture the rotation of the lobes. The numerical model is validated by comparing the simulated results with the literature values. The processes of suction, displacement, compression and exhaust are accurately captured in the transient simulation. The fluid pressure value remains in the range of inlet pressure value till the processes of suction and displacement are over. The instantaneous process of compression is accurately captured in the simulation. The movement of a particular working chamber is traced along the gradual degree of lobe’s rotation. At five different degrees of lobe’s rotation, pressure contour plots are reported which clearly shows the pressure values inside the working chamber. Each pressure value inside the working chamber conforms to the particular process in which the working chamber is operating. Finally, the power requirement at the shaft of rotation is estimated from the simulated values. The estimated value of power requirement is 3.61 BHP FHP whereas the same calculated theoretically is 3 BHP FHP. The discrepancy is attributed to the assumption of symmetry of blower along the thickness.
文摘The investigation focuses on evaluating the effect of varying % of Red Mud (RM) reinforcement with Ordinary Portland Slag Cement (OPSC). Characterisation is done by adding 10%, 20%, 30%, 40% and 50% of RM by weight to OPSC. RM + OPSC composite mortars are made in an 8.5 × 5 × 4 cm<sup>3</sup> cast iron mould with external vibration keeping water-binder ratio 0.4 by weight. The mortars are cured in water for 28 days and their physio-chemical characteristics are investigated. Mortar performances like compressive strength, hardness, XRD, FTIR, SEM are diagnosed. The composite mortars cementing properties are compared with original OPSC. The result reveals the augmentation of RM with OPSC increases the hydration capacity of OPSC with improved compressive strength. The experimental optimization shows a maximum value up to 10% - 20% OPSC can be replaced by RM as filling material.
文摘This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior and extract the kinetic parameters of Jamadoba coal and its corresponding density sepa<span style="font-family:Verdana;color:#000000;">rated macerals. The weight loss was measured in air atmosphere. The coal </span><span style="font-family:Verdana;color:#000000;">samples used in this study were obtained from Jamadoba mines, Jharkhand. Sam</span><span style="font-family:Verdana;color:#000000;">ples of 35 mg and 200 μm mean size were subjected to synthetic air atmos</span><span style="font-family:Verdana;color:#000000;">pheres (21% O</span><sub><span style="font-family:Verdana;color:#000000;">2</span></sub><span style="font-family:Verdana;color:#000000;">). Heating rates of 2, 5 and 7</span><span style="font-family:;" "=""><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;"></span><span><span style="font-family:Verdana;color:#000000;">C/min were applied until the tempera</span><span style="font-family:Verdana;color:#000000;">ture reached 1400</span></span><span><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;">C, which was kept constant until burnout. Low heating</span></span><span><span style="font-family:Verdana;color:#000000;"> rate was preferred so that devolatilization occurs prior to ignition and </span><span style="font-family:Verdana;color:#000000;">combust</span><span style="font-family:Verdana;color:#000000;">ion. Derivative thermogravimetry (DTG) analysis method was applied to </span><span style="font-family:Verdana;color:#000000;">measure the weight changes and rates of weight loss used for calculating the kinetic parameters. The activation energy (</span><i><span style="font-family:Verdana;color:#000000;">E</span><sub><span style="font-family:Verdana;color:#000000;">a</span></sub></i><span style="font-family:Verdana;color:#000000;">) and pre-exponential factor were obtained </span><span style="font-family:Verdana;color:#000000;">from model-free methods by applying non-isothermal thermogravimetry</span><span style="font-family:Verdana;color:#000000;"> analysis.</span></span></span>
文摘This paper presents a method by which the maximum possible rate of pulverized coal injection (PCI) in </span><span style="font-family:Verdana;">blast</span> <span style="font-family:Verdana;">furnace</span><span style="font-family:Verdana;"> can be predicted. The method is based on a two-step approach. First, a </span><span style="font-family:Verdana;">first principle</span><span style="font-family:Verdana;"> simulation model of the blast furnace is used to generate data sets for the development of a linear model of pulverized coal injection rate. The data has been generated randomly in MATLAB software within the range of operating parameters (constraints) of the blast furnace. After </span><span style="font-family:Verdana;">that</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the coefficients of the function have been determined. The inputs and the resulting outputs formed the data on which the linear optimization model was developed. Next, the linear model was used for maximizing the pulverized coal rate injection by optimizing the other variables. Two operating Indian Blast Furnaces have been chosen to validate the optimization model.
文摘Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.
文摘The present experimental work reveals the surface characteristics like wettability, thermal and sliding wear behaviour of plasma-sprayed red mud (RM) coatings premixed with fly ash (FA). Varying weight % of FA (10, 20, 30 and 40)—RM composite powder is used as precursor for coating. Atmospheric plasma-sprayed coatings are developed at different operating power like 5 kW, 10 kW, 15 kW and 20 kW separately on mild steel substrate. Tribological behaviour viz. sliding wear properties are studied at distinct operating load (10N, 15N, 20N, 25N), speed (40 rpm, 50 rpm, 60 rpm, 70 rpm) and track diameter of 100 mm using a pin on disc tribometer for duration of 30 minutes with 3 minute gap period for each experiment. The DSC and TGA experiments of the coatings are performed to understand the high temperature application areas. The contact angle result signifies the wettability of the prepared coatings is principally a function of composition. The reaction of surface roughness and spraying power is in-significant on water contact angle (WCA). In conclusion, the sliding wear experiments are optimized by Taguchi method to ascertain the influencing parameter on wear.
文摘The paper focuses on biodiesel production from kusum oil using esterification reaction followed by transesterification reaction in an in-house batch reactor setup. The effects of methanol to oil ratio (M/O), catalyst amount (H2SO4 and methodoxide) and reaction temperature on acid value and fatty acid methyl esters (FAME) is studied. Product has been analysed using FTIR spectroscopy technique for confirmation of ester group in biodiesel. Experimental data was optimized by Taguchi analysis to conclude the optimum variable affecting the response. In both processes M/O ratio has the significant effect for biodiesel production. The obtained biodiesel properties are close to commercial diesel fuel and may be rated as an alternative to conventional diesel. The biodiesel production will enhance the maximum utilisation of forestry or agricultural products.
文摘The present paper investigates the effect of strain rate on different tensile properties of high density polyethylene (HDPE) and polypropylene (PP) composite. Tensile specimens of virgin HDPE-PP composites are prepared via twin screw extruder and injection moulding methods as per ASTM D638-02a (Type-I);with gage length 50 mm, width 13 mm and thickness 3 mm. Composites are fabricated with PP as reinforcing agent at a loading rate of 10%, 20%, 30%, 40% and 50% by weight. Experiments are carried out at room temperature of 23°C and absolute humidity of 54% at a cross head speed of 30, 40, 50, 60 and 70 mm/min. Stress and strain values at yield and break points are reported. Atomic force microscopy (AFM) is used to study the distribution of polymer molecules in the mixture and surface roughness. As in last, experiments are designed by Taguchi optimization method to find out the dominating factors on tensile strength.
文摘Polymer composites of virgin high density poly ethylene (HDPE) and virgin polypropylene (PP) are prepared. PP of weight% of 20, 30 and 50 are reinforced to HDPE in the form of pellets. They are converted into raw polymer sheets using a two roll milling machine. The prepared raw sheets have undergone compression moulding to fabricate polymer sheets to study electrical properties like dielectric strength, surface resistivity and volume resistivity at atmospheric temperature and pressure. Result shows dielectric strength and volume resistivity decreases with addition of PP to HDPE, whereas surface resistivity increases. Crystal growth rate is observed using a cross polarised microscope (PLM). The microscopy results reveal, the PP crystallizes faster than HDPE and the growth rate declines for the polyblend;showing non-uniform and hazy spherulitic structure.