Hepatocellular carcinoma(HCC)is the most common form of liver cancer worldwide.It is caused by a variety of risk factors,most common ones being infection with hepatitis viruses,alcohol,and obesity.HCC often develops i...Hepatocellular carcinoma(HCC)is the most common form of liver cancer worldwide.It is caused by a variety of risk factors,most common ones being infection with hepatitis viruses,alcohol,and obesity.HCC often develops in the background of underlying cirrhosis,and even though a number of interventional treatment methods are currently in use,recurrence is fairly common among patients who have had a resection.Therefore,whole liver transplantation remains the most practical treatment option for HCC.Due to the growing incidence of HCC,intense research efforts are being made to understand cellular and molecular mechanisms of the disease so that novel therapeutic strategies can be developed to combat liver cancer.In recent years,it has become clear that innate immunity plays a critical role in the development of a number of liver diseases,including HCC.In particular,the activation of Toll-like receptor signaling results in the generation of immune responses that often results in the production of proinflammatory cytokines and chemokines,and could cause acute inflammation in the liver.In this review,the current knowledge on the role of innate immune responses in the development and progression of HCC is examined,and emerging therapeutic strategies based on molecular mechanisms of HCC are discussed.展开更多
AIM:To identify the genes induced and regulated by the MYC protein in generating tumors from liver stem cells.METHODS:In this study,we have used an immortal porcine liver stem cell line,PICM-19,to study the role of c-...AIM:To identify the genes induced and regulated by the MYC protein in generating tumors from liver stem cells.METHODS:In this study,we have used an immortal porcine liver stem cell line,PICM-19,to study the role of c-MYC in hepatocarcinogenesis.PICM-19 cells were converted into cancer cells(PICM-19-CSCs)by overexpressing human MYC.To identify MYC-driven differential gene expression,transcriptome sequencing was carried out by RNA sequencing,and genes identified by this method were validated using real-time PCR.In vivo tumorigenicity studies were then conducted by injecting PICM-19-CSCs into the flanks of immunodeficient mice.RESULTS:Our results showed that MYC-overexpressing PICM-19 stem cells formed tumors in immunodeficient mice demonstrating that a single oncogene was sufficient to convert them into cancer cells(PICM-19-CSCs).By using comparative bioinformatics analyses,we have determined that>1000 genes were differentially expressed between PICM-19 and PICM-19-CSCs.Gene ontology analysis further showed that the MYCinduced,altered gene expression was primarily associated with various cellular processes,such as metabolism,cell adhesion,growth and proliferation,cell cycle,inflammation and tumorigenesis.Interestingly,six genes expressed by PICM-19 cells(CDO1,C22orf39,DKK2,ENPEP,GPX6,SRPX2)were completely silenced after MYC-induction in PICM-19-CSCs,suggesting that the absence of these genes may be critical for inducingtumorigenesis.CONCLUSION:MYC-driven genes may serve as promising candidates for the development of hepatocellular carcinoma therapeutics that would not have deleterious effects on other cell types in the liver.展开更多
文摘Hepatocellular carcinoma(HCC)is the most common form of liver cancer worldwide.It is caused by a variety of risk factors,most common ones being infection with hepatitis viruses,alcohol,and obesity.HCC often develops in the background of underlying cirrhosis,and even though a number of interventional treatment methods are currently in use,recurrence is fairly common among patients who have had a resection.Therefore,whole liver transplantation remains the most practical treatment option for HCC.Due to the growing incidence of HCC,intense research efforts are being made to understand cellular and molecular mechanisms of the disease so that novel therapeutic strategies can be developed to combat liver cancer.In recent years,it has become clear that innate immunity plays a critical role in the development of a number of liver diseases,including HCC.In particular,the activation of Toll-like receptor signaling results in the generation of immune responses that often results in the production of proinflammatory cytokines and chemokines,and could cause acute inflammation in the liver.In this review,the current knowledge on the role of innate immune responses in the development and progression of HCC is examined,and emerging therapeutic strategies based on molecular mechanisms of HCC are discussed.
基金Supported by Departmental funds to Dr.Aravalli RN
文摘AIM:To identify the genes induced and regulated by the MYC protein in generating tumors from liver stem cells.METHODS:In this study,we have used an immortal porcine liver stem cell line,PICM-19,to study the role of c-MYC in hepatocarcinogenesis.PICM-19 cells were converted into cancer cells(PICM-19-CSCs)by overexpressing human MYC.To identify MYC-driven differential gene expression,transcriptome sequencing was carried out by RNA sequencing,and genes identified by this method were validated using real-time PCR.In vivo tumorigenicity studies were then conducted by injecting PICM-19-CSCs into the flanks of immunodeficient mice.RESULTS:Our results showed that MYC-overexpressing PICM-19 stem cells formed tumors in immunodeficient mice demonstrating that a single oncogene was sufficient to convert them into cancer cells(PICM-19-CSCs).By using comparative bioinformatics analyses,we have determined that>1000 genes were differentially expressed between PICM-19 and PICM-19-CSCs.Gene ontology analysis further showed that the MYCinduced,altered gene expression was primarily associated with various cellular processes,such as metabolism,cell adhesion,growth and proliferation,cell cycle,inflammation and tumorigenesis.Interestingly,six genes expressed by PICM-19 cells(CDO1,C22orf39,DKK2,ENPEP,GPX6,SRPX2)were completely silenced after MYC-induction in PICM-19-CSCs,suggesting that the absence of these genes may be critical for inducingtumorigenesis.CONCLUSION:MYC-driven genes may serve as promising candidates for the development of hepatocellular carcinoma therapeutics that would not have deleterious effects on other cell types in the liver.