This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inf...The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inference restricted to the odd prime number set only. Based on this redefinition, one can describe an empirical-heuristic proof of the Collatz conjecture.展开更多
This study describes how one can construct sets of composite natural numbers as tensorial products of the vectors created with the natural powers of prime numbers.
A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the preci...A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the precise Mersenne natural number intervals: [0;M<sub>N</sub>]. This permits the formulation of an extended twin prime conjecture. Moreover, it is found that the prime numbers subsets contained in Mersenne intervals have cardinalities strongly correlated with the corresponding Mersenne numbers.展开更多
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
文摘The definition of Collatz Operator, the mathematical avatar of the Collatz Algorithm, permits the transformation of the Collatz conjecture, which is delineated over the whole natural number set, into an equivalent inference restricted to the odd prime number set only. Based on this redefinition, one can describe an empirical-heuristic proof of the Collatz conjecture.
文摘This study describes how one can construct sets of composite natural numbers as tensorial products of the vectors created with the natural powers of prime numbers.
文摘A simple recursive algorithm to generate the set of natural numbers, based on Mersenne numbers: M<sub>N</sub> = 2<sup>N</sup> – 1, is used to count the number of prime numbers within the precise Mersenne natural number intervals: [0;M<sub>N</sub>]. This permits the formulation of an extended twin prime conjecture. Moreover, it is found that the prime numbers subsets contained in Mersenne intervals have cardinalities strongly correlated with the corresponding Mersenne numbers.