By studying the diversity and community structure of rhizosphere soil fungi of different plants in the tundra on the northern slope of Changbai Mountain, it provides theoretical support for the restoration of environm...By studying the diversity and community structure of rhizosphere soil fungi of different plants in the tundra on the northern slope of Changbai Mountain, it provides theoretical support for the restoration of environmental degradation and in-depth study of fungal diversity in the tundra of Changbai Mountain. High-throughput sequencing technology was used to determine the ITS1 region of fungal amplicons, so as to analyze the diversity of fungal communities in the rhizosphere soil of six plants in the tundra of Changbai Mountain, and to analyze the correlation between the environment and the diversity and richness of fungal communities in combination with relevant soil physical and chemical factors. The diversity and richness of fungal community in the rhizosphere soil of six plants in Changbai Mountain tundra were different. The Simpson and Shannon indexes of Saxifraga stolonifera Curt were the highest, and the richness of fungal community in Dryas octopetala was the highest. The analysis of fungal community composition showed that the fungal colonies in plant rhizosphere soil samples mainly belonged to Ascomycota and Basidiomycota, which were the main dominant phyla. Mortierella, Fusarium and Sordariomycetes are common fungal genera in the rhizosphere soil of six plants, but their abundances are different among different plants. Water content was negatively correlated with fungal diversity, and TP was positively correlated with fungal community diversity. There were some differences in the composition and diversity of rhizosphere soil fungal communities of six plants in Changbai Mountain tundra. Ascomycota and Basidiomycota were the main soil fungal phyla in the rhizosphere of six plants in Changbai Mountain tundra. The results could provide theoretical guidance for ecological protection of Changbai Mountain tundra.展开更多
We established a monolayer polarized cell model using human kidney 2 (HK-2) cells cultured in a transwell chamber to examine the changes in the morphology and physiological functions of human-derived renal proximal tu...We established a monolayer polarized cell model using human kidney 2 (HK-2) cells cultured in a transwell chamber to examine the changes in the morphology and physiological functions of human-derived renal proximal tubular epithelial cells caused by tripterygium tablet extract (TTE) and triptolide. HK-2 cells were cultured on PCF membranes to form a complete monolayer of cells. A MTT assay was used to select 10, 40, 160, 640 μg·ml-1 TTE or 4, 16, 64, 256 ng·ml-1 triptolide to treat HK-2 monolayer cells. After 24 hours, a FITC permeability assay was performed;GGT, LDH and NAG secretion on the apical (AP) and basolateral (BL) sides of the cells by HK-2 cells were examined. The morphology and the monolayer structure of HK-2 cells was observed via optical microscope and scanning electron microscope, respectively. The effect on the cytoskeleton of HK-2 cells was observed under a fluorescence microscope. The IC50 of TTE was 277.122 μg·ml-1, and the IC50 of triptolide was 148.035 ng·ml-1. Compared with the DMSO group, the FITC leakage rate with TTE 160, 640 μg·ml-1 treated group and 4 - 256 ng·ml-1 triptolide dose group exhibited statistically significant increase. TTE significantly increased secretion of GGT and LDH at 160, 640 μg·ml-1, meanwhile, dramatically increased the AP/BL ratio of LDH at 160 μg·ml-1;triptolide significantly increased secretion and AP/BL ratio of GGT and LDH at 256 ng·ml-1. The morphological observations via optical and electron microscope indicated various degrees of damage to HK-2 cells by TTE and triptolide, and the degree of damage correlated positively with the dosage of the tested articles. Compared with DMSO group, the cellular damage degrees at TTE dosages of 40 - 640 μg·ml-1 and triptolide dose group at 16, 256 ng·ml-1 exhibited statistically significant differences via observation under optical microscope. Both TTE and triptolide caused various degrees of shortening and thickening of intracellular F-actin bundles of HK-2 cells;aggravation of these changes was observed with increasing drug dosage. Thus, we conclude both TTE and triptolide caused damage to human renal proximal tubular epithelial cells at certain dosages;TTE dosages of 40 μg·ml-1 and above and triptolide dose group at 16 ng·ml-1 and above exhibited the changes in the morphology, meanwhile, TTE dosages of 160 μg·ml-1 and above and triptolide dose group at 256 ng·ml-1 exhibited the changes in the physiological functions such as secretion of HK-2 cell.展开更多
Background:Some personality traits could be a predictor for coping styles.The objective of this investigation was to examine the correlation between personality traits and coping mechanisms in the context of gene regu...Background:Some personality traits could be a predictor for coping styles.The objective of this investigation was to examine the correlation between personality traits and coping mechanisms in the context of gene regulation among breast cancer patients.Material and methods:This cross-sectional study was performed in 2021.A total of 200 breast cancer patients were included in this study.Data were collected using the Trait Coping Style Questionnaire(TCSQ)and the Eysenck Personality Questionnaire-Revised Short Scale for Chinese(EPQ-RSC).And individuals’blood was tested for genotype.Results:The findings indicated that there existed an inverse relationship between extraversion and negative coping style while also demonstrating a significant association between extraversion and positive coping style.Neuroticism was positively correlated with negative coping style but negatively with positive coping style.The SNP of NTSR1 only moderated the relationship between neuroticism and negative coping styles in breast cancer patients.Conclusion:The present investigation delves into the correlation between personality traits and coping mechanisms at the molecular level in breast cancer patients.展开更多
Objective: Coronary artery was ligated to study the characteristics of myocardial ischemia in rats. Methods: The left anterior descending artery was ligated to establish the rat model of acute myocardial ischemia. All...Objective: Coronary artery was ligated to study the characteristics of myocardial ischemia in rats. Methods: The left anterior descending artery was ligated to establish the rat model of acute myocardial ischemia. All animals were divided into normal control group, sham operation group and model group. 1, 2 and 4 weeks after modeling, ECG (II lead) was recorded, the weight of whole heart and left ventricle were recorded and organ indexes were calculated;myocardial infarct size was determined by TTC;CK, CK-MB, LDH, AST contents of serum were detected;cardiac function was determined by left ventricular intubation via carotid artery and left ventricular was taken to perform pathological observation. Results: 1 week after modeling, compared with the sham operation group, the ECG and heart function index of rats model had significant change, but the myocardial enzymes did not change significantly;4 weeks after modeling, the ECG and cardiac function of animal models had a recovery trend, but the myocardial enzymes, including CK, CK-MB, LDH, AST, were significantly increased;1 week after modeling, the left ventricular indexes of model rats were increased;the infarct size was about 30%, myocardial cell necrosis and granulation tissue hyperplasia could be observed in infarction area;with the modeling time extended, from 2 to 4 weeks, the left ventricular and heart indexes of model group were significantly increased;the infarct size was relatively constant, left ventricular became thickly, and fibrous or granulation tissue was significantly proliferated in infarction area under microscope. Conclusion: The indexes of myocardial ischemia induced by coronary artery ligation in rats are different at different time points. The results suggest that the time point should be selected to observe the anti-myocardial ischemia effect of the subjects from different aspects.展开更多
Precision-cut liver slice has been successfully used to study the mechanism of drug-induced hepatotoxicity, the prediction of liver toxicity, the discovery of early hepatic toxicity biomarker and the metabolism of dru...Precision-cut liver slice has been successfully used to study the mechanism of drug-induced hepatotoxicity, the prediction of liver toxicity, the discovery of early hepatic toxicity biomarker and the metabolism of drug in liver. We detected the expression of CYP3A4, CYP2B1 + CYP2B2 and CYP2E1 in precision-cut liver slice after co-cultured with monocrotaline or Tussilago farfara alkaloids to investigate the hepatotoxicity mechanism of those drugs. After co-culturing with monocrotaline or Tussilago farfara alkaloids for 6 hours, the expression of CYP3A4 in the microsome of precision-cut liver slices was detected by Western blot, and the expressions of CYP2B1 + CYP2B2 and CYP2E1 were detected by immunofluorescence. The results showed that monocrotaline induced the expression of CYP3A4 and CYP2B1 + CYP2B2, and Tussilago farfara alkaloids obviously up-regulated the expression of CYP2E1 and CYP3A4. Thus, we conclude that the up-regulation of CYP3A4, CYP2B1 + CYP2B2 and CYP2E1 may be one of the toxic mechanisms of liver injury of those drugs.展开更多
文摘By studying the diversity and community structure of rhizosphere soil fungi of different plants in the tundra on the northern slope of Changbai Mountain, it provides theoretical support for the restoration of environmental degradation and in-depth study of fungal diversity in the tundra of Changbai Mountain. High-throughput sequencing technology was used to determine the ITS1 region of fungal amplicons, so as to analyze the diversity of fungal communities in the rhizosphere soil of six plants in the tundra of Changbai Mountain, and to analyze the correlation between the environment and the diversity and richness of fungal communities in combination with relevant soil physical and chemical factors. The diversity and richness of fungal community in the rhizosphere soil of six plants in Changbai Mountain tundra were different. The Simpson and Shannon indexes of Saxifraga stolonifera Curt were the highest, and the richness of fungal community in Dryas octopetala was the highest. The analysis of fungal community composition showed that the fungal colonies in plant rhizosphere soil samples mainly belonged to Ascomycota and Basidiomycota, which were the main dominant phyla. Mortierella, Fusarium and Sordariomycetes are common fungal genera in the rhizosphere soil of six plants, but their abundances are different among different plants. Water content was negatively correlated with fungal diversity, and TP was positively correlated with fungal community diversity. There were some differences in the composition and diversity of rhizosphere soil fungal communities of six plants in Changbai Mountain tundra. Ascomycota and Basidiomycota were the main soil fungal phyla in the rhizosphere of six plants in Changbai Mountain tundra. The results could provide theoretical guidance for ecological protection of Changbai Mountain tundra.
文摘We established a monolayer polarized cell model using human kidney 2 (HK-2) cells cultured in a transwell chamber to examine the changes in the morphology and physiological functions of human-derived renal proximal tubular epithelial cells caused by tripterygium tablet extract (TTE) and triptolide. HK-2 cells were cultured on PCF membranes to form a complete monolayer of cells. A MTT assay was used to select 10, 40, 160, 640 μg·ml-1 TTE or 4, 16, 64, 256 ng·ml-1 triptolide to treat HK-2 monolayer cells. After 24 hours, a FITC permeability assay was performed;GGT, LDH and NAG secretion on the apical (AP) and basolateral (BL) sides of the cells by HK-2 cells were examined. The morphology and the monolayer structure of HK-2 cells was observed via optical microscope and scanning electron microscope, respectively. The effect on the cytoskeleton of HK-2 cells was observed under a fluorescence microscope. The IC50 of TTE was 277.122 μg·ml-1, and the IC50 of triptolide was 148.035 ng·ml-1. Compared with the DMSO group, the FITC leakage rate with TTE 160, 640 μg·ml-1 treated group and 4 - 256 ng·ml-1 triptolide dose group exhibited statistically significant increase. TTE significantly increased secretion of GGT and LDH at 160, 640 μg·ml-1, meanwhile, dramatically increased the AP/BL ratio of LDH at 160 μg·ml-1;triptolide significantly increased secretion and AP/BL ratio of GGT and LDH at 256 ng·ml-1. The morphological observations via optical and electron microscope indicated various degrees of damage to HK-2 cells by TTE and triptolide, and the degree of damage correlated positively with the dosage of the tested articles. Compared with DMSO group, the cellular damage degrees at TTE dosages of 40 - 640 μg·ml-1 and triptolide dose group at 16, 256 ng·ml-1 exhibited statistically significant differences via observation under optical microscope. Both TTE and triptolide caused various degrees of shortening and thickening of intracellular F-actin bundles of HK-2 cells;aggravation of these changes was observed with increasing drug dosage. Thus, we conclude both TTE and triptolide caused damage to human renal proximal tubular epithelial cells at certain dosages;TTE dosages of 40 μg·ml-1 and above and triptolide dose group at 16 ng·ml-1 and above exhibited the changes in the morphology, meanwhile, TTE dosages of 160 μg·ml-1 and above and triptolide dose group at 256 ng·ml-1 exhibited the changes in the physiological functions such as secretion of HK-2 cell.
基金This work was supported by the National Natural Science Foundation of China[grant number 72074067]S&T Program of Hebei[grant number 21377729D]+2 种基金Natural Science Foundation of Hebei Province[grant numbers H2020206483,H2021206289]Technical Innovative Youth Talents of Hebei Medical University[grant number TJSK202103]Young scientific and technological talents support program of Hebei Medical University[grant number CYCZ2021012].
文摘Background:Some personality traits could be a predictor for coping styles.The objective of this investigation was to examine the correlation between personality traits and coping mechanisms in the context of gene regulation among breast cancer patients.Material and methods:This cross-sectional study was performed in 2021.A total of 200 breast cancer patients were included in this study.Data were collected using the Trait Coping Style Questionnaire(TCSQ)and the Eysenck Personality Questionnaire-Revised Short Scale for Chinese(EPQ-RSC).And individuals’blood was tested for genotype.Results:The findings indicated that there existed an inverse relationship between extraversion and negative coping style while also demonstrating a significant association between extraversion and positive coping style.Neuroticism was positively correlated with negative coping style but negatively with positive coping style.The SNP of NTSR1 only moderated the relationship between neuroticism and negative coping styles in breast cancer patients.Conclusion:The present investigation delves into the correlation between personality traits and coping mechanisms at the molecular level in breast cancer patients.
文摘Objective: Coronary artery was ligated to study the characteristics of myocardial ischemia in rats. Methods: The left anterior descending artery was ligated to establish the rat model of acute myocardial ischemia. All animals were divided into normal control group, sham operation group and model group. 1, 2 and 4 weeks after modeling, ECG (II lead) was recorded, the weight of whole heart and left ventricle were recorded and organ indexes were calculated;myocardial infarct size was determined by TTC;CK, CK-MB, LDH, AST contents of serum were detected;cardiac function was determined by left ventricular intubation via carotid artery and left ventricular was taken to perform pathological observation. Results: 1 week after modeling, compared with the sham operation group, the ECG and heart function index of rats model had significant change, but the myocardial enzymes did not change significantly;4 weeks after modeling, the ECG and cardiac function of animal models had a recovery trend, but the myocardial enzymes, including CK, CK-MB, LDH, AST, were significantly increased;1 week after modeling, the left ventricular indexes of model rats were increased;the infarct size was about 30%, myocardial cell necrosis and granulation tissue hyperplasia could be observed in infarction area;with the modeling time extended, from 2 to 4 weeks, the left ventricular and heart indexes of model group were significantly increased;the infarct size was relatively constant, left ventricular became thickly, and fibrous or granulation tissue was significantly proliferated in infarction area under microscope. Conclusion: The indexes of myocardial ischemia induced by coronary artery ligation in rats are different at different time points. The results suggest that the time point should be selected to observe the anti-myocardial ischemia effect of the subjects from different aspects.
文摘Precision-cut liver slice has been successfully used to study the mechanism of drug-induced hepatotoxicity, the prediction of liver toxicity, the discovery of early hepatic toxicity biomarker and the metabolism of drug in liver. We detected the expression of CYP3A4, CYP2B1 + CYP2B2 and CYP2E1 in precision-cut liver slice after co-cultured with monocrotaline or Tussilago farfara alkaloids to investigate the hepatotoxicity mechanism of those drugs. After co-culturing with monocrotaline or Tussilago farfara alkaloids for 6 hours, the expression of CYP3A4 in the microsome of precision-cut liver slices was detected by Western blot, and the expressions of CYP2B1 + CYP2B2 and CYP2E1 were detected by immunofluorescence. The results showed that monocrotaline induced the expression of CYP3A4 and CYP2B1 + CYP2B2, and Tussilago farfara alkaloids obviously up-regulated the expression of CYP2E1 and CYP3A4. Thus, we conclude that the up-regulation of CYP3A4, CYP2B1 + CYP2B2 and CYP2E1 may be one of the toxic mechanisms of liver injury of those drugs.