In injuries reducing ambulance response time (time from injury to hospital arrival) is an important factor for saving people’s lives. Helicopter emergency medical services can reduce out-of-hospital transport times b...In injuries reducing ambulance response time (time from injury to hospital arrival) is an important factor for saving people’s lives. Helicopter emergency medical services can reduce out-of-hospital transport times because of their high speed and their ability to travel in straight paths?unlike ground ambulance which are restricted to road network paths, as well as the ability toaccess rural or remote area injuries that are difficult to reach by ground ambulance. GIS technology aids air ambulance movement planning to reduce out-of-hospital response time based on mathematical and geographic models to support decision making which is necessary from out-of-hospital care providers. The goal of this study is to use GIS to develop an efficient DSS to outline where air ambulance can reduce response times, by using spatial analysis tools to create Euclidean distance and direction zones around receiving hospitals. The study concludes that GIS technology can be used to develop an efficient DSS to outline where air ambulance can reduce response times, by creating surfaces of Euclidean allocation, direction, and distance that can be used to improve initial response times for the civil defense air rescue and air ambulance services.展开更多
Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy dat...Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique.展开更多
文摘In injuries reducing ambulance response time (time from injury to hospital arrival) is an important factor for saving people’s lives. Helicopter emergency medical services can reduce out-of-hospital transport times because of their high speed and their ability to travel in straight paths?unlike ground ambulance which are restricted to road network paths, as well as the ability toaccess rural or remote area injuries that are difficult to reach by ground ambulance. GIS technology aids air ambulance movement planning to reduce out-of-hospital response time based on mathematical and geographic models to support decision making which is necessary from out-of-hospital care providers. The goal of this study is to use GIS to develop an efficient DSS to outline where air ambulance can reduce response times, by using spatial analysis tools to create Euclidean distance and direction zones around receiving hospitals. The study concludes that GIS technology can be used to develop an efficient DSS to outline where air ambulance can reduce response times, by creating surfaces of Euclidean allocation, direction, and distance that can be used to improve initial response times for the civil defense air rescue and air ambulance services.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(KEP-81-130-42)The authors,therefore acknowledge with thanks DSR technical and financial support。
文摘Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique.