Text summarization is the process of automatically creating a compressed version of a given document preserving its information content. There are two types of summarization: extractive and abstractive. Extractive sum...Text summarization is the process of automatically creating a compressed version of a given document preserving its information content. There are two types of summarization: extractive and abstractive. Extractive summarization methods simplify the problem of summarization into the problem of selecting a representative subset of the sentences in the original documents. Abstractive summarization may compose novel sentences, unseen in the original sources. In our study we focus on sentence based extractive document summarization. The extractive summarization systems are typically based on techniques for sentence extraction and aim to cover the set of sentences that are most important for the overall understanding of a given document. In this paper, we propose unsupervised document summarization method that creates the summary by clustering and extracting sentences from the original document. For this purpose new criterion functions for sentence clustering have been proposed. Similarity measures play an increasingly important role in document clustering. Here we’ve also developed a discrete differential evolution algorithm to optimize the criterion functions. The experimental results show that our suggested approach can improve the performance compared to sate-of-the-art summarization approaches.展开更多
This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. ...This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. Data cleaning is ap- plied in warehouses for detection and deletion of errors, discrepancy in data in order to improve their quality. For this purpose, fuzzy record comparison algorithms are for clearing of registration data of domain names reviewed in this work. Also, identification method of domain names registration data for data warehouse formation is proposed. Deci- sion making algorithms for identification of registration data are implemented in DRRacket and Python.展开更多
In this paper detection method for the illegal access to the cloud infrastructure is proposed. Detection process is based on the collaborative filtering algorithm constructed on the cloud model. Here, first of all, th...In this paper detection method for the illegal access to the cloud infrastructure is proposed. Detection process is based on the collaborative filtering algorithm constructed on the cloud model. Here, first of all, the normal behavior of the user is formed in the shape of a cloud model, then these models are compared with each other by using the cosine similarity method and by applying the collaborative filtering method the deviations from the normal behavior are evaluated. If the deviation value is above than the threshold, the user who gained access to the system is evaluated as illegal, otherwise he is evaluated as a real user.展开更多
This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main c...This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main content of the text, and summaries are created by extracting the highest scored sentences from the original document. The model formalized as a multiobjective integer programming problem. An advantage of this model is that it can cover the main content of source (s) and provide less redundancy in the generated sum- maries. To extract sentences which form a summary with an extensive coverage of the main content of the text and less redundancy, have been used the similarity of sentences to the original document and the similarity between sentences. Performance evaluation is conducted by comparing summarization outputs with manual summaries of DUC2004 dataset. Experiments showed that the proposed approach outperforms the related methods.展开更多
文摘Text summarization is the process of automatically creating a compressed version of a given document preserving its information content. There are two types of summarization: extractive and abstractive. Extractive summarization methods simplify the problem of summarization into the problem of selecting a representative subset of the sentences in the original documents. Abstractive summarization may compose novel sentences, unseen in the original sources. In our study we focus on sentence based extractive document summarization. The extractive summarization systems are typically based on techniques for sentence extraction and aim to cover the set of sentences that are most important for the overall understanding of a given document. In this paper, we propose unsupervised document summarization method that creates the summary by clustering and extracting sentences from the original document. For this purpose new criterion functions for sentence clustering have been proposed. Similarity measures play an increasingly important role in document clustering. Here we’ve also developed a discrete differential evolution algorithm to optimize the criterion functions. The experimental results show that our suggested approach can improve the performance compared to sate-of-the-art summarization approaches.
文摘This work is dedicated to formation of data warehouse for processing of a large volume of registration data of domain names. Data cleaning is applied in order to increase the effectiveness of decision making support. Data cleaning is ap- plied in warehouses for detection and deletion of errors, discrepancy in data in order to improve their quality. For this purpose, fuzzy record comparison algorithms are for clearing of registration data of domain names reviewed in this work. Also, identification method of domain names registration data for data warehouse formation is proposed. Deci- sion making algorithms for identification of registration data are implemented in DRRacket and Python.
文摘In this paper detection method for the illegal access to the cloud infrastructure is proposed. Detection process is based on the collaborative filtering algorithm constructed on the cloud model. Here, first of all, the normal behavior of the user is formed in the shape of a cloud model, then these models are compared with each other by using the cosine similarity method and by applying the collaborative filtering method the deviations from the normal behavior are evaluated. If the deviation value is above than the threshold, the user who gained access to the system is evaluated as illegal, otherwise he is evaluated as a real user.
文摘This paper proposes an extractive generic text summarization model that generates summaries by selecting sentences according to their scores. Sentence scores are calculated using their extensive coverage of the main content of the text, and summaries are created by extracting the highest scored sentences from the original document. The model formalized as a multiobjective integer programming problem. An advantage of this model is that it can cover the main content of source (s) and provide less redundancy in the generated sum- maries. To extract sentences which form a summary with an extensive coverage of the main content of the text and less redundancy, have been used the similarity of sentences to the original document and the similarity between sentences. Performance evaluation is conducted by comparing summarization outputs with manual summaries of DUC2004 dataset. Experiments showed that the proposed approach outperforms the related methods.