期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于眼前节相干光断层扫描成像的核性白内障分类算法 被引量:5
1
作者 章晓庆 方建生 +5 位作者 肖尊杰 陈浜 risa higashita 陈婉 袁进 刘江 《计算机科学》 CSCD 北大核心 2022年第3期204-210,共7页
白内障是导致视觉损害和致盲的主要眼病,眼前节光学相干断层成像技术(Anterior Segment Optical Coherence Tomography,AS-OCT)具有非接触、高分辨率、检查快速、客观定量化测量等特点,在临床上已经被广泛应用于眼病的诊断。目前缺乏基... 白内障是导致视觉损害和致盲的主要眼病,眼前节光学相干断层成像技术(Anterior Segment Optical Coherence Tomography,AS-OCT)具有非接触、高分辨率、检查快速、客观定量化测量等特点,在临床上已经被广泛应用于眼病的诊断。目前缺乏基于眼前节OCT图像的核性白内障分类研究工作,为此提出了一种基于眼前节OCT图像的核性白内障分类算法。首先,利用自适应阈值方法、边缘检测Canny算法和手工校正相结合的方式从眼前节OCT图像中提取晶状体的核性区域;然后,基于图像强度和直方图的特征统计方法提取18个像素特征,并应用皮尔逊相关系数方法分析提取像素特征与核性白内障严重程度之间的相关性;最后,利用随机森林算法构建分类模型,从而得到核性白内障分类结果。在一个眼前节OCT图像数据集上的实验结果表明,所提算法对核性白内障严重程度的分类准确率和召回率分别达到了75.53%和74.04%,具有作为核性白内障临床诊断的定量分析参考工具的潜力。 展开更多
关键词 白内障 眼前节光学相干断层成像 晶状体 核性区域 机器学习 随机森林
下载PDF
Mixed-decomposed convolutional network:A lightweight yet efficient convolutional neural network for ocular disease recognition
2
作者 Xiaoqing Zhang Xiao Wu +5 位作者 Zunjie Xiao Lingxi Hu Zhongxi Qiu Qingyang Sun risa higashita Jiang Liu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期319-332,共14页
Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing oc... Eye health has become a global health concern and attracted broad attention.Over the years,researchers have proposed many state-of-the-art convolutional neural networks(CNNs)to assist ophthalmologists in diagnosing ocular diseases efficiently and precisely.However,most existing methods were dedicated to constructing sophisticated CNNs,inevitably ignoring the trade-off between performance and model complexity.To alleviate this paradox,this paper proposes a lightweight yet efficient network architecture,mixeddecomposed convolutional network(MDNet),to recognise ocular diseases.In MDNet,we introduce a novel mixed-decomposed depthwise convolution method,which takes advantage of depthwise convolution and depthwise dilated convolution operations to capture low-resolution and high-resolution patterns by using fewer computations and fewer parameters.We conduct extensive experiments on the clinical anterior segment optical coherence tomography(AS-OCT),LAG,University of California San Diego,and CIFAR-100 datasets.The results show our MDNet achieves a better trade-off between the performance and model complexity than efficient CNNs including MobileNets and MixNets.Specifically,our MDNet outperforms MobileNets by 2.5%of accuracy by using 22%fewer parameters and 30%fewer computations on the AS-OCT dataset. 展开更多
关键词 artificial intelligence deep learning deep neural networks image analysis image classification medical applications medical image processing
下载PDF
面向白内障识别的临床特征校准注意力网络
3
作者 章晓庆 肖尊杰 +3 位作者 赵宇航 巫晓 东田理沙 刘江 《计算机工程与应用》 CSCD 北大核心 2024年第3期321-330,共10页
近年来,卷积神经网络(convolutional neural network,CNN)模型已经被广泛用于年龄相关性白内障自动分类任务,然而,鲜有研究工作将年龄相关性白内障的临床先验知识注入卷积神经网络架构设计中,以此来提高年龄相关性白内障的分类效果和改... 近年来,卷积神经网络(convolutional neural network,CNN)模型已经被广泛用于年龄相关性白内障自动分类任务,然而,鲜有研究工作将年龄相关性白内障的临床先验知识注入卷积神经网络架构设计中,以此来提高年龄相关性白内障的分类效果和改善模型决策过程的可解释性。提出了一种临床特征校准注意力网络(clinical feature recalibration attention network,CFANet)模型用于自动识别年龄相关性白内障严重级别。在CFANet中,设计了一个简单且有效的临床特征校准注意力模块(clinical feature recalibration attention block,CFA),其不仅能对不同临床特征类型进行自适应地加权融合,还通过门控操作符来突出重要通道和抑制不重要通道。在一个核性白内障的眼前节光学相干断层成像影像(anterior segment optical coherence tomography,AS-OCT)数据集和一个公开眼科影像数据集上进行了充分实验,实验结果表明,相较于squeeze-and-excitation network(SENet)、efficient channel network(ECANet)、style-based recalibration module(SRM),CFANet在AS-OCT数据集上的分类准确率至少提升了3.54个百分点,同时在公开的眼科影像数据集上的分类结果比先进的神经网络模型和已发表的研究工作提升了1个百分点以上。此外,还通过可视化方法分析临床特征的权重分布和通道的注意力权重分布来提高该文模型决策过程的可解释性。 展开更多
关键词 年龄相关性白内障分类 眼前节光学相干断层成像 临床特征校准注意力模块 可解释性 卷积神经网络 可视化
下载PDF
AS-OCT图像下的自动皮质性白内障分类框架
4
作者 徐格蕾 章晓庆 +4 位作者 肖尊杰 risa higashita 陈婉 袁进 刘江 《计算机系统应用》 2022年第12期10-19,共10页
白内障是一种主要导致视觉损伤的眼病.早期干预和白内障手术是改善患者视力和生活质量的主要手段.眼前节光学相干断层成像图像(anterior segment optical coherence tomography,AS-OCT)是一种新型眼科图像,其具有非接触、高分辨率、检... 白内障是一种主要导致视觉损伤的眼病.早期干预和白内障手术是改善患者视力和生活质量的主要手段.眼前节光学相干断层成像图像(anterior segment optical coherence tomography,AS-OCT)是一种新型眼科图像,其具有非接触、高分辨率、检查快速等特点.在临床上,眼科医生已经逐渐采用AS-OCT图像进行眼科疾病如青光眼的诊断,然而尚未有研究工作利用它进行皮质性白内障(cortical cataract,CC)自动分类.为此,提出了一个基于ASOCT图像的自动皮质性白内障分类框架,由图像预处理、特征提取、特征筛选和分类等4部分组成.首先,利用反光区域去除和对比度增强方法进行图像预处理;紧接着使用灰度共生矩阵(grey level co-occurrence matrix,GLCM)、灰度区域大小矩阵(grey level size zone matrix,GLSZM)和邻域灰度差矩阵(neighborhood grey tone difference matrix,NGTDM)方法从皮质区域提取了22个特征;然后,采用斯皮尔曼相关系数方法对提取的特征进行特征重要性分析并筛除冗余特征;最后利用线性支持向量机方法进行分类.在一个临床AS-OCT图像数据集上的实验结果表明,所提出的皮质性白内障分类框架准确率、召回率、精确率和F1分别达到86.04%,86.18%,88.27%和86.35%,取得与先进的深度学习算法接近的性能,表明其具有作为辅助眼科医生进行皮质性白内障临床诊断工具的潜力. 展开更多
关键词 皮质性白内障 眼前节光学相干断层成像 晶状体皮质性区域 特征提取 机器学习 支持向量机
下载PDF
人工智能在青光眼诊断中的研究进展 被引量:3
5
作者 杨丽丹 李青蒨 +4 位作者 陈倩茵 马红婕 东田理沙 林迪 林晨 《眼科新进展》 CAS 北大核心 2023年第6期500-504,共5页
近年来,随着以深度学习(DL)为代表的人工智能(AI)技术发展,为眼科领域带来了新的研究手段,提高了眼科疾病的筛查和诊断水平。目前,AI对糖尿病视网膜病变、白内障、早产儿视网膜病变、角膜炎等多种疾病的诊断效率较高。在青光眼方面,AI... 近年来,随着以深度学习(DL)为代表的人工智能(AI)技术发展,为眼科领域带来了新的研究手段,提高了眼科疾病的筛查和诊断水平。目前,AI对糖尿病视网膜病变、白内障、早产儿视网膜病变、角膜炎等多种疾病的诊断效率较高。在青光眼方面,AI可用于分析眼底彩色照相、光学相干断层扫描(OCT)、视野等多模态影像综合评估结构及功能改变,从而提高青光眼的诊断水平。本文主要对AI在青光眼诊断中的研究进展进行综述,探讨其优势和现阶段的局限性。 展开更多
关键词 青光眼 人工智能 深度学习
下载PDF
多区域融合注意力网络模型下的核性白内障分类 被引量:4
6
作者 章晓庆 肖尊杰 +4 位作者 东田理沙 陈婉 胡衍 袁进 刘江 《中国图象图形学报》 CSCD 北大核心 2022年第3期948-960,共13页
目的核性白内障是主要致盲和导致视觉损害的眼科疾病,早期干预和白内障手术可以有效改善患者的视力和生活质量。眼前节光学相干断层成像图像(anterior segment optical coherence tomography,AS-OCT)能够非接触、客观和快速地获取白内... 目的核性白内障是主要致盲和导致视觉损害的眼科疾病,早期干预和白内障手术可以有效改善患者的视力和生活质量。眼前节光学相干断层成像图像(anterior segment optical coherence tomography,AS-OCT)能够非接触、客观和快速地获取白内障混浊信息。临床研究已经发现在AS-OCT图像中核性白内障严重程度与核性区域像素特征,如均值存在强相关性和高可重复性。但目前基于AS-OCT图像的自动核性白内障分类工作较少且分类结果还有较大提升空间。为此,本文提出一种新颖的多区域融合注意力网络(multi-region fusion attention network,MRA-Net)对AS-OCT图像中的核性白内障严重程度进行精准分类。方法在提出的多区域融合注意力模型中,本文设计了一个多区域融合注意力模块(multi-region fusion attention,MRA),对不同核性区域特征表示进行融合来增强分类结果;另外,本文验证了以人和眼为单位的AS-OCT图像数据集拆分方式对核性白内障分类结果的影响。结果在一个自建的AS-OCT图像数据集上结果表明,本文模型的总体分类准确率为87.78%,比对比方法至少提高了1%。在10种分类算法上的结果表明:以眼为单位的AS-OCT数据集优于以人为单位的AS-OCT数据集的分类结果,F1和Kappa评价指标分别最大提升了4.03%和8%。结论本文模型考虑了特征图不同区域特征分布的差异性,使核性白内障分类更加准确;不同数据集拆分方式的结果表明,考虑到同一个人两只眼的核性白内障严重程度相似,建议白内障的AS-OCT图像数据集拆分以人为单位。 展开更多
关键词 核性白内障分类 眼前节光学相干断层成像图像(AS-OCT) 多区域融合注意力模块 深度学习 核性区域
原文传递
生成对抗式网络及其医学影像应用研究综述 被引量:8
7
作者 张颖麟 胡衍 +1 位作者 东田理沙 刘江 《中国图象图形学报》 CSCD 北大核心 2022年第3期687-703,共17页
生成对抗式网络(generative adversarial network,GAN)由负责学习数据分布的生成器和负责鉴别样本真伪的判别器构成,二者在相互对抗过程中互相学习逐渐变强。该网络模型使深度学习方法可以自动学习损失函数,减少了对专家知识的依赖,已... 生成对抗式网络(generative adversarial network,GAN)由负责学习数据分布的生成器和负责鉴别样本真伪的判别器构成,二者在相互对抗过程中互相学习逐渐变强。该网络模型使深度学习方法可以自动学习损失函数,减少了对专家知识的依赖,已经广泛应用于自然图像处理领域,对解决医学影像处理的相关瓶颈问题亦具有巨大应用前景。本文旨在找到生成对抗式网络与医学影像领域面临挑战的结合点,通过分析已有工作对未来研究方向进行展望,为该领域研究提供参考。1)阐述了生成对抗式网络的基本原理,从任务拆分、条件约束以及图像到图像的翻译等角度对其衍生模型进行分析回顾;2)对生成对抗式网络在医学影像领域中的数据增广、模态迁移、图像分割以及去噪等方面的应用进行回顾,分析各方法的优缺点与适用范围;3)对现有图像生成质量评估方法进行小结;4)总结生成对抗式网络在医学影像领域的研究进展,并结合该领域问题特性,指出现有理论应用存在的不足与改进方向。生成对抗式网络提出以来,理论不断完善,在医学影像的处理应用中也取得了长足发展,但仍然存在一些亟待解决的问题,包括3维数据合成、几何结构合理性保持、无标记和未配对数据使用以及多模态数据交叉应用等。 展开更多
关键词 生成对抗式网络(GAN) 医学影像 深度学习 数据增广 模态迁移 图像分割 图像去噪
原文传递
Machine Learning for Cataract Classification/Grading on Ophthalmic Imaging Modalities:A Survey 被引量:3
8
作者 Xiao-Qing Zhang Yan Hu +3 位作者 Zun-Jie Xiao Jian-Sheng Fang risa higashita Jiang Liu 《Machine Intelligence Research》 EI CSCD 2022年第3期184-208,共25页
Cataracts are the leading cause of visual impairment and blindness globally.Over the years,researchers have achieved significant progress in developing state-of-the-art machine learning techniques for automatic catara... Cataracts are the leading cause of visual impairment and blindness globally.Over the years,researchers have achieved significant progress in developing state-of-the-art machine learning techniques for automatic cataract classification and grading,aiming to prevent cataracts early and improve clinicians′diagnosis efficiency.This survey provides a comprehensive survey of recent advances in machine learning techniques for cataract classification/grading based on ophthalmic images.We summarize existing literature from two research directions:conventional machine learning methods and deep learning methods.This survey also provides insights into existing works of both merits and limitations.In addition,we discuss several challenges of automatic cataract classification/grading based on machine learning techniques and present possible solutions to these challenges for future research. 展开更多
关键词 CATARACT classification and grading ophthalmic image machine learning deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部