A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predicti...A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predictions are discussed.展开更多
We compare, following Pati, global symmetries, our topological supersymmetric preon model with the heterotic E<sub>8</sub> × E<sub>8</sub> string theory. We include Pati’s supergravity ba...We compare, following Pati, global symmetries, our topological supersymmetric preon model with the heterotic E<sub>8</sub> × E<sub>8</sub> string theory. We include Pati’s supergravity based preon model in this work and compare the preon interactions of his model to ours. Based on preon-string symmetry comparison and preon phenomenological results, we conclude that the fundamental particles are likely preons rather than standard model particles. .展开更多
We analyze the significance of supersymmetry in two topological models and the standard model (SM). We conclude that the two topological field theory models favor hidden supersymmetry. The SM superpartners, instead, h...We analyze the significance of supersymmetry in two topological models and the standard model (SM). We conclude that the two topological field theory models favor hidden supersymmetry. The SM superpartners, instead, have not been found.展开更多
A previous preon scenario for the standard model particles, based on unbroken supersymmetry, is applied to the problem of matter-antimatter asymmetry. Attention is paid to the fact that the asymmetric hydrogen atom—l...A previous preon scenario for the standard model particles, based on unbroken supersymmetry, is applied to the problem of matter-antimatter asymmetry. Attention is paid to the fact that the asymmetric hydrogen atom—like all atoms—can be described in terms of symmetric preons. Preons are created in the early universe. The matter-antimatter asymmetry is caused by stochastic correlations in charge density fluctuations of preons and antipreons and by the subsequent preon combinatorial mechanism to form quarks and leptons, and finally the three lightest elements. A tentative gravitino mass estimate is given based on minimal interference with nucleosynthesis. With local supersymmetry the scenario can be extended to supergravity.展开更多
文摘A model for particles based on preons in chiral, vector and tensor/graviton supermultiplets of unbroken global supersymmetry is engineered. The framework of the model is little string theory. Phenomenological predictions are discussed.
文摘We compare, following Pati, global symmetries, our topological supersymmetric preon model with the heterotic E<sub>8</sub> × E<sub>8</sub> string theory. We include Pati’s supergravity based preon model in this work and compare the preon interactions of his model to ours. Based on preon-string symmetry comparison and preon phenomenological results, we conclude that the fundamental particles are likely preons rather than standard model particles. .
文摘We analyze the significance of supersymmetry in two topological models and the standard model (SM). We conclude that the two topological field theory models favor hidden supersymmetry. The SM superpartners, instead, have not been found.
文摘A previous preon scenario for the standard model particles, based on unbroken supersymmetry, is applied to the problem of matter-antimatter asymmetry. Attention is paid to the fact that the asymmetric hydrogen atom—like all atoms—can be described in terms of symmetric preons. Preons are created in the early universe. The matter-antimatter asymmetry is caused by stochastic correlations in charge density fluctuations of preons and antipreons and by the subsequent preon combinatorial mechanism to form quarks and leptons, and finally the three lightest elements. A tentative gravitino mass estimate is given based on minimal interference with nucleosynthesis. With local supersymmetry the scenario can be extended to supergravity.