期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhancing potassium-ion storage of Bi_(2)S_(3) through external–internal dual synergism: Ti_(3)C_(2)T_(x) compositing and Cu^(2+) doping
1
作者 Dawei Sha Yurong You +5 位作者 rongxiang hu Jianxiang Ding Xin Cao Yuan Zhang Long Pan ZhengMing Sun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期39-51,共13页
Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode ... Potassium-ion batteries(PIBs)offer a cost-effective and resource-abundant solution for large-scale energy storage.However,the progress of PIBs is impeded by the lack of high-capacity,long-life,and fast-kinetics anode electrode materials.Here,we propose a dual synergic optimization strategy to enhance the K^(+)storage stability and reaction kinetics of Bi_(2)S_(3) through two-dimensional compositing and cation doping.Externally,Bi_(2)S_(3) nanoparticles are loaded onto the surface of three-dimensional interconnected Ti_(3)C_(2)T_(x) nanosheets to stabilize the electrode structure.Internally,Cu^(2+)doping acts as active sites to accelerate K^(+)storage kinetics.Various theoretical simulations and ex situ techniques are used to elucidate the external–internal dual synergism.During discharge,Ti_(3)C_(2)T_(x) and Cu^(2+)collaboratively facilitate K+intercalation.Subsequently,Cu^(2+)doping primarily promotes the fracture of Bi2S3 bonds,facilitating a conversion reaction.Throughout cycling,the Ti_(3)C_(2)T_(x) composite structure and Cu^(2+)doping sustain functionality.The resulting Cu^(2+)-doped Bi2S3 anchored on Ti_(3)C_(2)T_(x)(C-BT)shows excellent rate capability(600 mAh g^(-1) at 0.1 A g^(–1);105 mAh g^(-1) at 5.0 A g^(-1))and cycling performance(91 mAh g^(-1) at 5.0 A g^(-1) after 1000 cycles)in half cells and a high energy density(179 Wh kg–1)in full cells. 展开更多
关键词 Bi_(2)S_(3) cation doping potassium-ion batteries synergic mechanism Ti_(3)C_(2)T_(x)compositing
下载PDF
Built‑In Electric Field‑Driven Ultrahigh‑Rate K‑Ion Storage via Heterostructure Engineering of Dual Tellurides Integrated with Ti_(3)C_(2)T_(x)MXene 被引量:1
2
作者 Long Pan rongxiang hu +7 位作者 Yuan Zhang Dawei Sha Xin Cao Zhuoran Li Yonggui Zhao Jiangxiang Ding Yaping Wang ZhengMing Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期127-140,共14页
Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct th... Exploiting high-rate anode materials with fast K+diffusion is intriguing for the development of advanced potassium-ion batteries(KIBs)but remains unrealized.Here,heterostructure engineering is proposed to construct the dual transition metal tellurides(CoTe_(2)/ZnTe),which are anchored onto two-dimensional(2D)Ti_(3)C_(2)T_(x)MXene nanosheets.Various theoretical modeling and experimental findings reveal that heterostructure engineering can regulate the electronic structures of CoTe_(2)/ZnTe interfaces,improving K+diffusion and adsorption.In addition,the different work functions between CoTe_(2)/ZnTe induce a robust built-in electric field at the CoTe_(2)/ZnTe interface,providing a strong driving force to facilitate charge transport.Moreover,the conductive and elastic Ti_(3)C_(2)T_(x)can effectively promote electrode conductivity and alleviate the volume change of CoTe_(2)/ZnTe heterostructures upon cycling.Owing to these merits,the resulting CoTe_(2)/ZnTe/Ti_(3)C_(2)T_(x)(CZT)exhibit excellent rate capability(137.0 mAh g^(-1)at 10 A g^(-1))and cycling stability(175.3 mAh g^(-1)after 4000 cycles at 3.0 A g^(-1),with a high capacity retention of 89.4%).More impressively,the CZT-based full cells demonstrate high energy density(220.2 Wh kg^(-1))and power density(837.2 W kg^(-1)).This work provides a general and effective strategy by integrating heterostructure engineering and 2D material nanocompositing for designing advanced high-rate anode materials for next-generation KIBs. 展开更多
关键词 Transition metal tellurides HETEROSTRUCTURES Built-in electric field Potassium-ion batteries Anode material
下载PDF
Flame-retardant concentrated electrolyte enabling a Li F-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries 被引量:7
3
作者 Zhe Yu Jianjun Zhang +9 位作者 Chao Wang rongxiang hu Xiaofan Du Ben Tang Hongtao Qu Han Wu Xin Liu Xinhong Zhou Xiaoyan Yang Guanglei Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期154-160,共7页
Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lith... Lithium–sulfur batteries have been regarded as the most promising high-energy electrochemical energy storage device owing to the high energy density, low cost and environmental friendliness. However, traditional lithium–sulfur batteries using ether-based electrolytes often suffer from severe safety risks(i.e. combustion). Herein, we demonstrated a novel kind of flame-retardant concentrated electrolyte(6.5 M lithium bis(trifluoromethylsulphonyl)imide/fluoroethylene carbonate) for highly-safe and widetemperature lithium–sulfur batteries. It was found that such concentrated electrolyte showed superior flame retardancy, high lithium-ion transference number(0.69) and steady lithium plating/stripping behavior(2.5 m Ah cm^(-2) over 3000 h). Moreover, lithium–sulfur batteries using this flame-retardant concentrated electrolyte delivered outstanding cycle performance in a wide range of temperatures(-10 °C, 25 °C and 90 °C). This superior battery performance is mainly attributed to the LiF-rich solid electrolyte interphase formed on lithium metal anode, which can effectively suppress the continuous growth of lithium dendrites. Above-mentioned fascinating characteristics would endow this flame-retardant concentrated electrolyte a very promising candidate for highly-safe and wide-temperature lithium–sulfur batteries. 展开更多
关键词 Flame retardancy Concentrated electrolyte LiF-rich solid electrolyte interphase Lithium–sulfur batteries Wide temperature
下载PDF
具有三明治结构的MXene/聚酰亚胺复合泡沫用于多尺度微波吸收
4
作者 张亚君 韩美康 +3 位作者 胡荣祥 张培根 潘龙 孙正明 《Science China Materials》 SCIE EI CAS CSCD 2024年第1期272-278,共7页
三维多孔结构可促进电磁波在材料内部的多重反射,是提升微波吸收性能的有效方法.然而,传统的三维多孔结构中,多重反射仅发生在孔内.扩大多重反射的范围应能进一步提升材料的吸收性能.因此,本文开发了一种孔壁为三明治结构的三维多孔复... 三维多孔结构可促进电磁波在材料内部的多重反射,是提升微波吸收性能的有效方法.然而,传统的三维多孔结构中,多重反射仅发生在孔内.扩大多重反射的范围应能进一步提升材料的吸收性能.因此,本文开发了一种孔壁为三明治结构的三维多孔复合泡沫,在亚毫米尺度孔和亚微米尺度孔壁中同时发生多重反射,实现多尺度微波吸收.本研究采用聚多巴胺修饰的聚酰亚胺泡沫(PDA@PIF)作为三维多孔骨架,在其孔壁表面负载Ti_(3)C_(2)T_(x).所得的Ti_(3)C_(2)T_(x)@PDA@PIF能够在整个X波段吸收超过90%的入射波.这得益于多尺度多重反射、电导损耗和界面极化.同时,该复合泡沫具有优异的柔性和低密度(~30 mg cm^(-3)).该工作为实现轻质、柔性、宽频的吸波材料提供了一种可行的方法,丰富了电磁防护的有效结构. 展开更多
关键词 三明治结构 聚酰亚胺泡沫 多重反射 微米尺度 微波吸收 复合泡沫 电磁防护 吸收性能
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部