In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in th...In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in this paper,and a reasonable production process was proposed.Through the physical and mechanical properties and fire resistance testing and technical and economic analysis,the applicability of composite plywood was evaluated.The results of the study showed that the physical mechanics of the three kinds of composite structure plywood met the standard requirements,and their fire resistance was far better than that of ordinary plywood.Among them,the S1 structural board had the best overall physical and mechanical properties.The S3 structural board showed the best fire resistance,which was about 1.9 times more than that of ordinary plywood,and the added cost was the lowest.The thin cork board added to the S2 structural board had poor fire performance since the air in the cork board cavities had a certain combustion-supporting effect,which inhibited the fire resistance of high-pressure laminate(HPL)layer.Moreover,the additional cost of the S2 board was the highest,and its comprehensive performance was the worst.The S3 structural plywood product composed of HPL fireproof board with a thickness of about 1 mm in the surface layer and ordinary plywood with a thickness of about 12 mm in the core layer was the most cost-effective product,which could meet the needs of various fields such as construction,home furnishing,decoration and transportation.展开更多
In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequ...In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.展开更多
In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic forc...In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic force microscope was used to test the three-dimensional sur face morphology of three kinds of sawn timber and calculate its surface roughness.This study also analyzed the reasonable plan for the value of wood surface roughness and the advantages of the three dimensional shape tester,as well as the influence of tree species,three sections,air dry density and other factors on the surface roughness of the specimen after mechanical processing.The results have shown that it is a more appropriate method to select the calculated values of S。and Sq as the evaluation of the surface roughness of wood with random surface characteristics.The three dimensional wood surface topo-graphy tester can efficiently,conveniently and accurately display the three dimensional topography of wood at a micron-level resolution,and is characterized by high eficiency and good durability.The three dimensional surface morphology characteristics of the three sawn woods correspond to their roughness.The surface roughness of woods is arranged as follows:Sitka spruce>Larch>Beech.For the same tree species,the roughness of the corresponding section after sawing is as follows:chordwise section>crosswise section>radial section.The radial section has lower roughness than the other surfaces.The surface roughness of the wood after sawing is mainly related to its air-dry density.The above is intended to provide a useful reference for the application of measuring and evaluating the surface roughness of sawn timber using the three dimensional surface topography test method.展开更多
基金This work was supported by the 2020 Jiangsu Provincial Department of Science and Technology Policy Guidance Category(North Jiangsu Science and Technology Special SZ-L YG202014).
文摘In order to improve the fire resistance,water resistance and wear resistance of ordinary plywood products in the wood processing industry,three composite structures of plywood products S1,S2 and S3 were designed in this paper,and a reasonable production process was proposed.Through the physical and mechanical properties and fire resistance testing and technical and economic analysis,the applicability of composite plywood was evaluated.The results of the study showed that the physical mechanics of the three kinds of composite structure plywood met the standard requirements,and their fire resistance was far better than that of ordinary plywood.Among them,the S1 structural board had the best overall physical and mechanical properties.The S3 structural board showed the best fire resistance,which was about 1.9 times more than that of ordinary plywood,and the added cost was the lowest.The thin cork board added to the S2 structural board had poor fire performance since the air in the cork board cavities had a certain combustion-supporting effect,which inhibited the fire resistance of high-pressure laminate(HPL)layer.Moreover,the additional cost of the S2 board was the highest,and its comprehensive performance was the worst.The S3 structural plywood product composed of HPL fireproof board with a thickness of about 1 mm in the surface layer and ordinary plywood with a thickness of about 12 mm in the core layer was the most cost-effective product,which could meet the needs of various fields such as construction,home furnishing,decoration and transportation.
文摘In order to better meet the objective requirements of the use safety of the high-rise glulam building floor structure and the living comfort of the residents,the transient excitation,environmental excitation and frequency spectrum identification methods were used to carry out experimental modal test in-site on the three rooms numbered A,B and C of the same glulam structural building.The three rooms have different functions,different floor sizes and different floor supporting structures.The research results have shown that the first-order bending frequency of the floor structure of Room A is 27.50 Hz,the transverse second-order bending frequency is 34.75 Hz,the longitudinal second-order bending frequency is 53.25 Hz,and the first-order torsional frequency is 56.25 Hz.The reinforced wooden beam at the bottom of the floor of Room A increases the transverse stiffness of the floor structure,but does not offset the anisotropy caused by the longitudinally installed glulam floors.The fundamental frequency values of the floor structures of the three rooms numbered A,B,and C are 27.5,13 and 18 Hz,respectively.This has a relatively high innovation and reference significance for integrating the theory of structural dynamic characteristics with the dynamic testing technology,improving the design level of high-rise glulam structure buildings,and improving the living comfort of residents.
文摘In order to explore the characteristics of the three-dimensional surface morphology of sawn timber,a three-dimensional wood surface morphology tester based on the scanning probe method and the principle of atomic force microscope was used to test the three-dimensional sur face morphology of three kinds of sawn timber and calculate its surface roughness.This study also analyzed the reasonable plan for the value of wood surface roughness and the advantages of the three dimensional shape tester,as well as the influence of tree species,three sections,air dry density and other factors on the surface roughness of the specimen after mechanical processing.The results have shown that it is a more appropriate method to select the calculated values of S。and Sq as the evaluation of the surface roughness of wood with random surface characteristics.The three dimensional wood surface topo-graphy tester can efficiently,conveniently and accurately display the three dimensional topography of wood at a micron-level resolution,and is characterized by high eficiency and good durability.The three dimensional surface morphology characteristics of the three sawn woods correspond to their roughness.The surface roughness of woods is arranged as follows:Sitka spruce>Larch>Beech.For the same tree species,the roughness of the corresponding section after sawing is as follows:chordwise section>crosswise section>radial section.The radial section has lower roughness than the other surfaces.The surface roughness of the wood after sawing is mainly related to its air-dry density.The above is intended to provide a useful reference for the application of measuring and evaluating the surface roughness of sawn timber using the three dimensional surface topography test method.