期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pre-training transformer with dual-branch context content module for table detection in document images
1
作者 Yongzhi LI Pengle ZHANG +2 位作者 Meng SUN Jin HUANG ruhan he 《虚拟现实与智能硬件(中英文)》 EI 2024年第5期408-420,共13页
Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such... Background Document images such as statistical reports and scientific journals are widely used in information technology.Accurate detection of table areas in document images is an essential prerequisite for tasks such as information extraction.However,because of the diversity in the shapes and sizes of tables,existing table detection methods adapted from general object detection algorithms,have not yet achieved satisfactory results.Incorrect detection results might lead to the loss of critical information.Methods Therefore,we propose a novel end-to-end trainable deep network combined with a self-supervised pretraining transformer for feature extraction to minimize incorrect detections.To better deal with table areas of different shapes and sizes,we added a dualbranch context content attention module(DCCAM)to high-dimensional features to extract context content information,thereby enhancing the network's ability to learn shape features.For feature fusion at different scales,we replaced the original 3×3 convolution with a multilayer residual module,which contains enhanced gradient flow information to improve the feature representation and extraction capability.Results We evaluated our method on public document datasets and compared it with previous methods,which achieved state-of-the-art results in terms of evaluation metrics such as recall and F1-score.https://github.com/Yong Z-Lee/TD-DCCAM. 展开更多
关键词 Table detection Document image analysis TRANSFORMER Dilated convolution Deformable convolution Feature fusion
下载PDF
引入共价型氮化钒来提高氮掺杂碳的亲电性以促进氧还原反应 被引量:5
2
作者 李士栋 庄泽超 +8 位作者 夏力学 朱杰鑫 刘子昂 贺汝涵 罗雯 黄文忠 石长玮 赵焱 周亮 《Science China Materials》 SCIE EI CAS CSCD 2023年第1期160-168,共9页
氮掺杂碳(NC)是一种有潜力的氧还原反应(ORR)电催化剂.氮掺杂碳可直接作为ORR活性位点中心,优化氮原子的电子结构对催化活性具有很大影响.本文通过简单的物理混合和煅烧处理,构建了一种由氮化钒(VN)纳米颗粒为核、“铠甲状”NC作为壳的... 氮掺杂碳(NC)是一种有潜力的氧还原反应(ORR)电催化剂.氮掺杂碳可直接作为ORR活性位点中心,优化氮原子的电子结构对催化活性具有很大影响.本文通过简单的物理混合和煅烧处理,构建了一种由氮化钒(VN)纳米颗粒为核、“铠甲状”NC作为壳的新型VN@NC纳米复合材料.得益于纳米线独特的核@壳结构和优化的电子结构,与纯NC和体相VN相比,所制备的VN@NC展现出更优异的ORR活性(起始电位:0.93 V).VN的引入诱导了电荷从NC上的氮原子转移到VN上的钒原子,增加了NC上氮原子的亲电性,从而优化了对含氧中间体的吸附过程.VN@NC也展现出了良好的循环稳定性(四万秒测试后,电流密度保持率为89%).本研究揭示了调节NC中氮原子电子结构的重要性,并为构建NC基复合型电催化剂提供了有效方法. 展开更多
关键词 亲电性 氧还原反应 电催化剂 氮化钒 物理混合 氮掺杂碳 壳结构 循环稳定性
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部