A magnetic field-controlled spin-current diode is theoretically proposed,which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes.By applying a spin bias VS acro...A magnetic field-controlled spin-current diode is theoretically proposed,which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes.By applying a spin bias VS across the junction,a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists.More interestingly,if we applied an external magnetic field on the quantum dot,we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias,while the charge current always decays to zero in the Coulomb blockade regime.Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias,while the net charge through the device is almost zero.Different from the traditional charge current diode,this design can change the polarity direction and rectifying ability by adjusting the external magnetic field,which is very convenient.This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.展开更多
A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices.The signature of a single-molecule magnet is switching between two bistabl...A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices.The signature of a single-molecule magnet is switching between two bistable magnetic ground states under an external magnetic field.Based on this feature,we theoretically investigate a magnetic-fieldcontrolled reversible resistance change active at low temperatures in a molecular magnetic tunnel junction,which consists of a single-molecule magnet sandwiched between a ferromagnetic electrode and a normal metal electrode.Our numerical results demonstrate that the molecular magnetism orientation can be manipulated by magnetic fields to be parallel/antiparallel to the ferromagnetic electrode magnetization.Moreover,different magnetic configurations can be“read out”based on different resistance states or different spin polarization parameters in the current spectrum,even in the absence of a magnetic field.Such an external magnetic field-controlled resistance state switching effect is similar to that in traditional spin valve devices.The difference between the two systems is that one of the ferromagnetic layers in the original device has been replaced by a magnetic molecule.This proposed scheme provides the possibility of better control of the spin freedom of electrons in molecular electrical devices,with potential applications in future high-density nonvolatile memory devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11404322)the Natural Science Foundation of Huai’an(Grant No.HAB202150).
文摘A magnetic field-controlled spin-current diode is theoretically proposed,which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes.By applying a spin bias VS across the junction,a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists.More interestingly,if we applied an external magnetic field on the quantum dot,we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias,while the charge current always decays to zero in the Coulomb blockade regime.Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias,while the net charge through the device is almost zero.Different from the traditional charge current diode,this design can change the polarity direction and rectifying ability by adjusting the external magnetic field,which is very convenient.This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.
基金supported by the National Natural Science Foundation of China(Grant No.11404322)the Natural Science Foundation of Huai’an(Grant Nos.HAB202229 and HAB202150)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.22KJD140002)。
文摘A single-molecule magnet is a long-sought-after nanoscale component because it can enable us to miniaturize nonvolatile memory storage devices.The signature of a single-molecule magnet is switching between two bistable magnetic ground states under an external magnetic field.Based on this feature,we theoretically investigate a magnetic-fieldcontrolled reversible resistance change active at low temperatures in a molecular magnetic tunnel junction,which consists of a single-molecule magnet sandwiched between a ferromagnetic electrode and a normal metal electrode.Our numerical results demonstrate that the molecular magnetism orientation can be manipulated by magnetic fields to be parallel/antiparallel to the ferromagnetic electrode magnetization.Moreover,different magnetic configurations can be“read out”based on different resistance states or different spin polarization parameters in the current spectrum,even in the absence of a magnetic field.Such an external magnetic field-controlled resistance state switching effect is similar to that in traditional spin valve devices.The difference between the two systems is that one of the ferromagnetic layers in the original device has been replaced by a magnetic molecule.This proposed scheme provides the possibility of better control of the spin freedom of electrons in molecular electrical devices,with potential applications in future high-density nonvolatile memory devices.