This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study emp...The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.展开更多
A fast and accurate algorithm is established in this paper to increase the precision of ballistic trajectory prediction.The algorithm is based on the six-degree-of-freedom(6 DOF)trajectory equations,to estimate the pr...A fast and accurate algorithm is established in this paper to increase the precision of ballistic trajectory prediction.The algorithm is based on the six-degree-of-freedom(6 DOF)trajectory equations,to estimate the projectile attitude angles in every measuring time.Hereby,the algorithm utilizes the Davidon-Fletcher-Powell(DFP)method to solve nonlinear equations and Doppler radar trajectory test information containing only position coordinates of the projectile to reconstruct the angular information.The″position coordinates by the test″and″angular displacements by reconstruction″at the end phase of the radar measurement are used as an initial value for the trajectory computation to extrapolate the trajectory impact point.The numerical simulations validate the proposed method and demonstrate that the estimated impact point agrees very well with the real one.Morover,other artillery trajectory can be predicted by the algorithm,and other trajectory models,such as 4 DOF and 5 DOF models,can also be incorporated into the proposed algorithm.展开更多
Surface roughness is one of the most critical attributes of machined components,especially those used in high-performance systems.Online surface roughness monitoring offers advancements comparable to post-process insp...Surface roughness is one of the most critical attributes of machined components,especially those used in high-performance systems.Online surface roughness monitoring offers advancements comparable to post-process inspection methods,reducing inspection time and costs and concurrently reducing the likelihood of defects.Currently,online monitoring approaches for surface roughness are constrained by several limitations,including the reliance on handcrafted feature extraction,which necessitates the involvement of human experts and entails time-consuming processes.Moreover,the prediction models trained under one set of cutting conditions exhibit poor performance when applied to different experimental settings.To address these challenges,this work presents a novel deep-learning-assisted online surface roughness monitoring method for ultraprecision fly cutting of copper workpieces under different cutting conditions.Tooltip acceleration signals were acquired during each cutting experiment to develop two datasets,and no handcrafted features were extracted.Five deep learning models were developed and evaluated using standard performance metrics.A convolutional neural network stacked on a long short-term memory network outperformed all other network models,yielding exceptional results,including a mean absolute percentage error as low as 1.51%and an R2value of 96.6%.Furthermore,the robustness of the proposed model was assessed via a validation cohort analysis using experimental data obtained using cutting parameters different from those previously employed.The performance of the model remained consistent and commendable under varied conditions,asserting its applicability in real-world scenarios.展开更多
The transfer matrix method for multibody systems, namely the "Rui method", is a new method for studying multibody system dynamics, which avoids the global dynamics equations of the system, keeps high computa...The transfer matrix method for multibody systems, namely the "Rui method", is a new method for studying multibody system dynamics, which avoids the global dynamics equations of the system, keeps high computational speed, and allows highly formalized programming. It has been widely applied to scientific research and key engineering of lots of complex mechanical systems in 52 research directions. The following aspects regarding the transfer matrix method for multibody systems are reviewed systematically in this paper: history, basic principles, formulas, algorithm, automatic deduction theorem of overall transfer equation, visualized simulation and design software, highlights, tendency, and applications in 52 research directions in over 100 key engineering products.展开更多
Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discre...Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.展开更多
In this paper, combining the transfer matrix method and the finite element method, the modified finite element transfer matrix method is presented for high efficient dynamic modeling of laminated plates. Then, by cons...In this paper, combining the transfer matrix method and the finite element method, the modified finite element transfer matrix method is presented for high efficient dynamic modeling of laminated plates. Then, by constructing the modal filter and the disturbance force observer, and using the feedback and feedforward approaches, the H ∞ independent modal space control strategy is designed for active vibration control of laminate plates subjected to arbitrary, immeasurable disturbance forces. Compared with ordinary dynamic modeling and control methods of laminated plate structures, the proposed method has the low memory requirement, high computational efficiency and robust control performance. Formulations as well as some numerical examples are given to validate the method and the control performance.展开更多
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.
基金supported by the Na- tional Natural Science Foundation of China (No. 11472135)the Science Challenge Project (No. JCKY2016212A506- 0104)
文摘The research on multiple launch rocket system(MLRS)is now even more demanding in terms of reducing the time for dynamic calculations and improving the firing accuracy,keeping the cost as low as possible.This study employs multibody system transfer matrix method(MSTMM),to model MLRS.The use of this method provides effective and fast calculations of dynamic characteristics,initial disturbance and firing accuracy.Further,a new method of rapid extrapolation of ballistic trajectory of MLRS is proposed by using the position information of radar tests.That extrapolation point is then simulated and compared with the actual results,which demonstrates a good agreement.The closed?loop fire correction method is used to improve the firing accuracy of MLRS at low cost.
基金supported by the Research Fund for the Doctoral Program of Higher Education of China (No. 20133219110037)the Natural Science Foundation of China (No.11472135)the Program for New Century Excellent Talents in University(No.NCET-10-0075)
文摘A fast and accurate algorithm is established in this paper to increase the precision of ballistic trajectory prediction.The algorithm is based on the six-degree-of-freedom(6 DOF)trajectory equations,to estimate the projectile attitude angles in every measuring time.Hereby,the algorithm utilizes the Davidon-Fletcher-Powell(DFP)method to solve nonlinear equations and Doppler radar trajectory test information containing only position coordinates of the projectile to reconstruct the angular information.The″position coordinates by the test″and″angular displacements by reconstruction″at the end phase of the radar measurement are used as an initial value for the trajectory computation to extrapolate the trajectory impact point.The numerical simulations validate the proposed method and demonstrate that the estimated impact point agrees very well with the real one.Morover,other artillery trajectory can be predicted by the algorithm,and other trajectory models,such as 4 DOF and 5 DOF models,can also be incorporated into the proposed algorithm.
基金supported by the Science Challenge Project(Grant No.JDZZ2016006-0102)。
文摘Surface roughness is one of the most critical attributes of machined components,especially those used in high-performance systems.Online surface roughness monitoring offers advancements comparable to post-process inspection methods,reducing inspection time and costs and concurrently reducing the likelihood of defects.Currently,online monitoring approaches for surface roughness are constrained by several limitations,including the reliance on handcrafted feature extraction,which necessitates the involvement of human experts and entails time-consuming processes.Moreover,the prediction models trained under one set of cutting conditions exhibit poor performance when applied to different experimental settings.To address these challenges,this work presents a novel deep-learning-assisted online surface roughness monitoring method for ultraprecision fly cutting of copper workpieces under different cutting conditions.Tooltip acceleration signals were acquired during each cutting experiment to develop two datasets,and no handcrafted features were extracted.Five deep learning models were developed and evaluated using standard performance metrics.A convolutional neural network stacked on a long short-term memory network outperformed all other network models,yielding exceptional results,including a mean absolute percentage error as low as 1.51%and an R2value of 96.6%.Furthermore,the robustness of the proposed model was assessed via a validation cohort analysis using experimental data obtained using cutting parameters different from those previously employed.The performance of the model remained consistent and commendable under varied conditions,asserting its applicability in real-world scenarios.
基金supported by the Science Challenge Project of China(Grant No.TZ2016006-0104)the National Program on Key Basic Research Project(Grant No.613308)the National Natural Science Foundation of China(Grant No.11472135)
文摘The transfer matrix method for multibody systems, namely the "Rui method", is a new method for studying multibody system dynamics, which avoids the global dynamics equations of the system, keeps high computational speed, and allows highly formalized programming. It has been widely applied to scientific research and key engineering of lots of complex mechanical systems in 52 research directions. The following aspects regarding the transfer matrix method for multibody systems are reviewed systematically in this paper: history, basic principles, formulas, algorithm, automatic deduction theorem of overall transfer equation, visualized simulation and design software, highlights, tendency, and applications in 52 research directions in over 100 key engineering products.
基金supported by the National Natural Science Foundation of China (Grant No: 10902051)the Natural Science Foundation of Jiangsu Province (Grant No: BK2008046)
文摘Efficient, precise dynamic modeling and analysis for complex weapon systems have become more and more important in their dynamic design and performance optimizing. As a new method developed in recent years, the discrete time transfer matrix method of multibody system is highly efficient for multibody system dynamics. In this paper, taking a shipboard gun system as an example, by deducing some new transfer equations of elements, the discrete time transfer matrix method of multibody sys- tem is used to solve the dynamics problems of complex rigid-flexible coupling weapon systems successfully. This method does not need the global dynamic equations of system and has the low order of system matrix, high computational efficiency. The proposed method has advantages for dynamic design of complex weapon systems, and can be carried over straightforwardly to other complex mechanical systems.
基金supported by the National Natural Science Foundation of China (Grant No. 10902051)the Natural Science Foundation of Jiangsu Province (Grant No. BK2008046)
文摘In this paper, combining the transfer matrix method and the finite element method, the modified finite element transfer matrix method is presented for high efficient dynamic modeling of laminated plates. Then, by constructing the modal filter and the disturbance force observer, and using the feedback and feedforward approaches, the H ∞ independent modal space control strategy is designed for active vibration control of laminate plates subjected to arbitrary, immeasurable disturbance forces. Compared with ordinary dynamic modeling and control methods of laminated plate structures, the proposed method has the low memory requirement, high computational efficiency and robust control performance. Formulations as well as some numerical examples are given to validate the method and the control performance.