A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at th...A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.展开更多
Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial str...Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.展开更多
The evolution of ablative Rayleigh–Taylor instability(ARTI)induced by single-mode stationary and time-varying perturbations in heat flux is studied numerically in two dimensions.Compared with the stationary case,time...The evolution of ablative Rayleigh–Taylor instability(ARTI)induced by single-mode stationary and time-varying perturbations in heat flux is studied numerically in two dimensions.Compared with the stationary case,time-varying heat-flux perturbation mitigates ARTI growth because of the enhanced thermal smoothing induced by the wave-like traveling heat flux.A resonance is found to form when the phase velocity of the heat-flux perturbation matches the average sound speed in the ablation region.In the resonant regime,the coherent density and temperature fluctuations enhance the electron thermal conduction in the ablation region and lead to larger ablation pressure and effective acceleration,which consequently yield higher linear growth rate and saturated bubble velocity.The enhanced effective acceleration offers increased implosion velocity but can also compromise the integrity of inertial confinement fusion shells by causing faster ARTI growth.展开更多
The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structu...The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural loess comprehensively and reasonably, a joint strength formula for structural loess was established. This formula comprehensively considers tensile and shear properties. Studies have shown that the tensile strength exhibits a decreasing trend with increasing water content. When the water content is constant, the tensile strength of the structurally intact soil is greater than that ofremolded soil. In the studies, no loss of the originally cured cohesion in the structurally intact soil samples was observed, given that the soil samples did not experience loading disturbance during the uniaxial compressive strength test, meaning there is a high initial structural strength. The results of the conventional triaxial shear strength test show that the water content is correlated with the strength of the structural loess. When the water content is low, the structural properties are strong, and when the water content is high, the structural properties are weak, which means that the water content and the ambient pressure have significant effects on the stress-strain relationship of structural loess. The established joint strength formula of structural loess effectively avoids overestimating the role of soil tensile strength in the traditional theory of Mohr-Coulomb strength.展开更多
Delayed neutron loss is an important parameter in the safety analysis of molten salt reactors. In this study,to obtain the effective delayed neutron fraction under flow condition, a delayed neutron precursor transport...Delayed neutron loss is an important parameter in the safety analysis of molten salt reactors. In this study,to obtain the effective delayed neutron fraction under flow condition, a delayed neutron precursor transport was implemented in the Monte Carlo code MCNP. The moltensalt reactor experiment(MSRE) model was used to analyze the reliability of this method. The obtained flow losses of reactivity for 235 U and 233 U fuels in the MSRE are223 pcm and 100.8 pcm, respectively, which are in good agreement with the experimental values(212 pcm and100.5 pcm, respectively). Then, six groups of effective delayed neutron fractions in a small molten salt reactor were calculated under different mass flow rates. The flow loss of reactivity at full power operation is approximately105.6 pcm, which is significantly lower than that of the MSRE due to the longer residence time inside the active core. The sensitivity of the reactivity loss to other factors,such as the residence time inside or outside the core and flow distribution, was evaluated as well. As a conclusion,the sensitivity of the reactivity loss to the residence time inside the core is greater than to other parameters.展开更多
In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those...In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those of the ORIGEN-S program in the static burnup mode,and the deviation was found to be less than 10%,which indicates that the results are in good agreement.Furthermore,the FPs distribution in the primary loop system under normal operating conditions of the 2 MW MSR was quantitatively analyzed.In addition,the distribution phenomenon of the FPs under different flow rate conditions was studied.At the end of life,the FPs activity in the core region(including active region,and upper and lower plenum regions)accounted for 77.3%,and that in the hot leg #1,main pump,hot leg #2,heat exchanger,and cold leg region accounted for 1.2%,16.15%,0.99%,2.5%,and 1.9%,respectively,of the total FPs in the primary loop under normal operating conditions.The proportion of FPs in the core decreased with the increase in flow rate in the range of 2.24-22,400 cm^3 s^-1.The established analytical method and conclusions of this study can provide an important basis for radiation safety design of the primary loop,radioactive source management design,thermal-hydraulic safety analysis,and radiochemical analysis of FPs of 2 MW MSRs.展开更多
In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched ...In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched uranium or plutonium as the starting fuel.By exploiting plutonium as the starting fuel and thorium as the fertile fuel,the high-purity^(233)U produced can be separated from the spent fuel by fluorination volatilization.Therefore,the molten salt reactor started with plutonium can be designed as a^(233)U breeder with the burning plutonium extracted from a pressurized water reactor(PWR).Combining these advantages,the study of the physical properties of plutonium-activated salt reactors is attractive.This study mainly focused on the burnup performance and temperature reactivity coefficient of a small modular molten-salt reactor started with plutonium(SM-MSR-Pu).The neutron spectra,^(233)U production,plutonium incineration,minor actinide(MA)residues,and temperature reactivity coefficients for different fuel salt volume fractions(VF)and hexagon pitch(P)sizes were calculated to analyze the burnup behavior in the SM-SMR-Pu.Based on the comparative analysis results of the burn-up calculation,a lower VF and larger P size are more beneficial for improving the burnup performance.However,from a passive safety perspective,a higher fuel volume fraction and smaller hexagon pitch size are necessary to achieve a deep negative feedback coefficient.Therefore,an excellent burnup performance and a deep negative temperature feedback coefficient are incompatible,and the optimal design range is relatively narrow in the optimized design of an SM-MSR-Pu.In a comprehensive consideration,P=20 cm and VF=20%are considered to be relatively balanced design parameters.Based on the fuel off-line batching scheme,a 250 MWth SM-MSR-Pu can produce approximately 29.83 kg of ^(233)U,incinerate 98.29 kg of plutonium,and accumulate 14.70 kg of MAs per year,and the temperature reactivity coefficient can always be lower than−4.0pcm/K.展开更多
The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carr...The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.展开更多
This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which ca...This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.展开更多
The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no...The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no initial criticality reserve, waste reduction, and a simplified fuel cycle. It has been recognized as an ideal reactor for achieving a closed Th–U cycle. Based on the carrier salt, molten salt fast reactors could be divided into either a molten chloride salt fast reactor(MCFR) or a molten fluoride salt fast reactor(MFFR);to compare their Th–U cycle performance, the neutronic parameters in a breeding and burning(B&B) transition scenario were studied based on similar core geometry and power. The results demonstrated that the required reprocessing rate for an MCFR to achieve self-breeding was lower than that of an MFFR.Moreover, the breeding capability of an MCFR was better than that of an MFFR;at a reprocessing rate of 40 L/day,using LEU and Pu as start-up fissile materials, the doubling time(DT) of an MFFR and MCFR were 88.0 years and 48.0 years, and 16.5 years and 16.2 years, respectively.Besides, an MCFR has lower radio-toxicity due to lower buildup of fission products(FPs) and transuranium(TRU),while an MFFR has a larger, delayed neutron fraction with smaller changes during the entire operation.展开更多
The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric ...The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.展开更多
The Langmuir Probe(LAP), onboard the China Seismo-Electromagnetic Satellite(CSES), has been designed for in situ measurements of bulk parameters of the ionosphere plasma, the first Chinese application of in-situ measu...The Langmuir Probe(LAP), onboard the China Seismo-Electromagnetic Satellite(CSES), has been designed for in situ measurements of bulk parameters of the ionosphere plasma, the first Chinese application of in-situ measurement technology in the field of space exploration. The two main parameters measured by LAP are electron density and temperature. In this paper, a brief description of the LAP and its work mode are provided. Based on characteristics of the LAP, and assuming an ideal plasma environment, we introduce in detail a method used to invert the I-V curve; the data products that can be accessed by users are shown. Based on the LAP data available, this paper reports that events such as earthquakes and magnetic storms are preceded and followed by obvious abnormal changes. We suggest that LAP could provide a valuable data set for studies of space weather, seismic events, and the ionospheric environment.展开更多
The production of radionuclides(90)^Sr and(131)^I in molten salt reactors is an attractive option to address the global shortage of radionuclides.This study evaluated the production characteristics of(90)^Sr and(131)^...The production of radionuclides(90)^Sr and(131)^I in molten salt reactors is an attractive option to address the global shortage of radionuclides.This study evaluated the production characteristics of(90)^Sr and(131)^I in a modular molten salt reactor,such as equilibrium time,yield,and cooling time of isotopic impurities.The fuel burn-up of a small modular molten salt reactor was analyzed by the Triton module of the scale program,and the variation in the fission yields of the two nuclides and their precursors with burn-up time.The yield of(131)^I and~(131)Te has been increasing during the lifetime.131 I has an equilibrium time of about 40 days,a saturation activity of about 40,300 TBq,and while~(131)Te takes 250 min to reach equilibrium,the equilibrium activity was about 38,000 TBq.The yields of90 Sr and~(90)Kr decreased gradually,the equilibrium time of90 Kr was short,and(90)^Sr could not reach equilibrium.Based on the experimental data of molten salt reactor experiment,the amount of nuclide migration to the tail gas and the corresponding cooling time of the isotope impurities under different extraction methods were estimated.Using the HF-H_2 bubbling method,3.49×10^(5)TBq of(131)^I can be extracted from molten salt every year,and after13 days of cooling,the impurity content meets the medical requirements.Using the electric field method,1296 TBq of(131)^I can be extracted from the off-gas system(its cooling time is 11 days)and 109 TBq of(90)^Sr.The yields per unit power for(131)^I and(90)^Sr is approximately 1350 TBq/MW and 530 TBq/MW,respectively,which shows that molten salt reactors have a high economic value.展开更多
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Chinese Academy of Sciences Talent Introduction Youth Program(No.SINAP-YCJH-202303)Chinese Academy of Sciences Special Research Assistant Funding Project and Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(JCYJ-SHFY-2021-003)。
文摘A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175310,12305268,and U2241281)the Natural Science Foundation of Hunan Province(Grant Nos.2024JJ6184,2022JJ20042,and 2021JJ40653)the Scientific Research Foundation of Hunan Provincial Education Department(Grant Nos.22B0655 and 22A0435)。
文摘Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations.The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons.The theoretical model established shows good agreement with the simulation results,indicating that the magnetic-field strength scales positively to the temperature of hot electrons.This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target.Compared with that for a common flat target,hot electrons can be effectively heated with the well-designed grating size,leading to a stronger magnetic field.The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25050400 and XDA25010200)the National Natural Science Foundation of China(Grant No.12175229 and 12388101)+1 种基金the Frontier Scientific Research Program of the Deep Space Exploration Laboratory(Grant No.2022-QYKYJH-HXYF-019)by the Fundamental Research Funds for the Central Universities.
文摘The evolution of ablative Rayleigh–Taylor instability(ARTI)induced by single-mode stationary and time-varying perturbations in heat flux is studied numerically in two dimensions.Compared with the stationary case,time-varying heat-flux perturbation mitigates ARTI growth because of the enhanced thermal smoothing induced by the wave-like traveling heat flux.A resonance is found to form when the phase velocity of the heat-flux perturbation matches the average sound speed in the ablation region.In the resonant regime,the coherent density and temperature fluctuations enhance the electron thermal conduction in the ablation region and lead to larger ablation pressure and effective acceleration,which consequently yield higher linear growth rate and saturated bubble velocity.The enhanced effective acceleration offers increased implosion velocity but can also compromise the integrity of inertial confinement fusion shells by causing faster ARTI growth.
基金supported by the National Natural Science Foundation of China(Grant No.11072193)the Fundamental Research Funds for the Central Universities(Grant No.2013G1502009)the China Postdoctoral Science Foundation(Grant No.20100481354)
文摘The strength of structural loess consists of the shear strength and tensile strength. In this study, the stress path, the failure envelope of principal stress ( Kf line), and the strength failure envelope of structurally intact loess and remolded loess were analyzed through three kinds of tests: the tensile strength test, the uniaxial compressive strength test, and the conventional triaxial shear strength test. Then, in order to describe the tensile strength and shear strength of structural loess comprehensively and reasonably, a joint strength formula for structural loess was established. This formula comprehensively considers tensile and shear properties. Studies have shown that the tensile strength exhibits a decreasing trend with increasing water content. When the water content is constant, the tensile strength of the structurally intact soil is greater than that ofremolded soil. In the studies, no loss of the originally cured cohesion in the structurally intact soil samples was observed, given that the soil samples did not experience loading disturbance during the uniaxial compressive strength test, meaning there is a high initial structural strength. The results of the conventional triaxial shear strength test show that the water content is correlated with the strength of the structural loess. When the water content is low, the structural properties are strong, and when the water content is high, the structural properties are weak, which means that the water content and the ambient pressure have significant effects on the stress-strain relationship of structural loess. The established joint strength formula of structural loess effectively avoids overestimating the role of soil tensile strength in the traditional theory of Mohr-Coulomb strength.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘Delayed neutron loss is an important parameter in the safety analysis of molten salt reactors. In this study,to obtain the effective delayed neutron fraction under flow condition, a delayed neutron precursor transport was implemented in the Monte Carlo code MCNP. The moltensalt reactor experiment(MSRE) model was used to analyze the reliability of this method. The obtained flow losses of reactivity for 235 U and 233 U fuels in the MSRE are223 pcm and 100.8 pcm, respectively, which are in good agreement with the experimental values(212 pcm and100.5 pcm, respectively). Then, six groups of effective delayed neutron fractions in a small molten salt reactor were calculated under different mass flow rates. The flow loss of reactivity at full power operation is approximately105.6 pcm, which is significantly lower than that of the MSRE due to the longer residence time inside the active core. The sensitivity of the reactivity loss to other factors,such as the residence time inside or outside the core and flow distribution, was evaluated as well. As a conclusion,the sensitivity of the reactivity loss to the residence time inside the core is greater than to other parameters.
基金supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)The Frontier Science Key Program of Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘In this study,a numerical flow model of the fission products(FPs)in the primary loop system of a molten salt reactor(MSR)was established and solved using Mathematica 7.0.The simulation results were compared with those of the ORIGEN-S program in the static burnup mode,and the deviation was found to be less than 10%,which indicates that the results are in good agreement.Furthermore,the FPs distribution in the primary loop system under normal operating conditions of the 2 MW MSR was quantitatively analyzed.In addition,the distribution phenomenon of the FPs under different flow rate conditions was studied.At the end of life,the FPs activity in the core region(including active region,and upper and lower plenum regions)accounted for 77.3%,and that in the hot leg #1,main pump,hot leg #2,heat exchanger,and cold leg region accounted for 1.2%,16.15%,0.99%,2.5%,and 1.9%,respectively,of the total FPs in the primary loop under normal operating conditions.The proportion of FPs in the core decreased with the increase in flow rate in the range of 2.24-22,400 cm^3 s^-1.The established analytical method and conclusions of this study can provide an important basis for radiation safety design of the primary loop,radioactive source management design,thermal-hydraulic safety analysis,and radiochemical analysis of FPs of 2 MW MSRs.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-003)the Chinese Academy of Sciences Special Research Assistant Funding Project.
文摘In a thorium-based molten salt reactor(TMSR),it is difficult to achieve the pure 232Th–^(233)U fuel cycle without sufficient^(233)U fuel supply.Therefore,the original molten salt reactor was designed to use enriched uranium or plutonium as the starting fuel.By exploiting plutonium as the starting fuel and thorium as the fertile fuel,the high-purity^(233)U produced can be separated from the spent fuel by fluorination volatilization.Therefore,the molten salt reactor started with plutonium can be designed as a^(233)U breeder with the burning plutonium extracted from a pressurized water reactor(PWR).Combining these advantages,the study of the physical properties of plutonium-activated salt reactors is attractive.This study mainly focused on the burnup performance and temperature reactivity coefficient of a small modular molten-salt reactor started with plutonium(SM-MSR-Pu).The neutron spectra,^(233)U production,plutonium incineration,minor actinide(MA)residues,and temperature reactivity coefficients for different fuel salt volume fractions(VF)and hexagon pitch(P)sizes were calculated to analyze the burnup behavior in the SM-SMR-Pu.Based on the comparative analysis results of the burn-up calculation,a lower VF and larger P size are more beneficial for improving the burnup performance.However,from a passive safety perspective,a higher fuel volume fraction and smaller hexagon pitch size are necessary to achieve a deep negative feedback coefficient.Therefore,an excellent burnup performance and a deep negative temperature feedback coefficient are incompatible,and the optimal design range is relatively narrow in the optimized design of an SM-MSR-Pu.In a comprehensive consideration,P=20 cm and VF=20%are considered to be relatively balanced design parameters.Based on the fuel off-line batching scheme,a 250 MWth SM-MSR-Pu can produce approximately 29.83 kg of ^(233)U,incinerate 98.29 kg of plutonium,and accumulate 14.70 kg of MAs per year,and the temperature reactivity coefficient can always be lower than−4.0pcm/K.
基金supported by the Civil Space Research project (ZH1 data validation: Ionospheric observatory theory)NFSC grant 41574139 and 41874174
文摘The China Seismo-Electromagnetic Satellite, launched into orbit from Jiuquan Satellite Launch Centre on February 2 nd, 2018, is China's first space satellite dedicated to geophysical exporation. The satellite carries eight scientific payloads including high-precision magnetometers to detect electromagnetic changes in space, in particular changes associated with global earthquake disasters. In order to encourage and facilitate use by geophysical scientists of data from the satellite's payloads, this paper introduces the application systems developed for the China Seismo-Electromagnetic Satellite by the Institute of Crustal Dynamics, China Earthquake Administration;these include platform construction, data classification, data storage, data format, and data access and acquisition.
基金supported by the Chinese Academy of Sciences TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Thorium uranium fuel cycle characteristics and key problem research Project(No.QYZDY-SSW-JSC016)
文摘This paper presents a neutronics design of a 10 MW ordered-pebble-bed fluoride-salt-cooled high-temperature experimental reactor. Through delicate layout, a core with ordered arranged pebble bed can be formed,which can keep core stability and meet the space requirements for thermal hydraulics and neutronics measurements.Overall, objectives of the core include inherent safety and sufficient excess reactivity providing 120 effective full power days for experiments. Considering the requirements above, the reactive control system is designed to consist of 16 control rods distributed in the graphite reflector. Combining the large control rods worth about 18000–20000 pcm, molten salt drain supplementary means(-6980 to -3651 pcm) and negative temperature coefficient(-6.32 to -3.80 pcm/K) feedback of the whole core, the reactor can realize sufficient shutdown margin and safety under steady state. Besides, some main physical properties, such as reactivity control, neutron spectrum and flux, power density distribution, and reactivity coefficient,have been calculated and analyzed in this study. In addition, some special problems in molten salt coolant are also considered, including ~6Li depletion and tritium production.
基金the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the National Natural Science Foundation of China(No.91326201)。
文摘The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no initial criticality reserve, waste reduction, and a simplified fuel cycle. It has been recognized as an ideal reactor for achieving a closed Th–U cycle. Based on the carrier salt, molten salt fast reactors could be divided into either a molten chloride salt fast reactor(MCFR) or a molten fluoride salt fast reactor(MFFR);to compare their Th–U cycle performance, the neutronic parameters in a breeding and burning(B&B) transition scenario were studied based on similar core geometry and power. The results demonstrated that the required reprocessing rate for an MCFR to achieve self-breeding was lower than that of an MFFR.Moreover, the breeding capability of an MCFR was better than that of an MFFR;at a reprocessing rate of 40 L/day,using LEU and Pu as start-up fissile materials, the doubling time(DT) of an MFFR and MCFR were 88.0 years and 48.0 years, and 16.5 years and 16.2 years, respectively.Besides, an MCFR has lower radio-toxicity due to lower buildup of fission products(FPs) and transuranium(TRU),while an MFFR has a larger, delayed neutron fraction with smaller changes during the entire operation.
基金supported by the National Natural Science Foundation of China (41404058)
文摘The CSES(China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.
基金supported by the National Natural Science Foundation of China (41404058)Beijing Natural Science Foundation (8184091)
文摘The Langmuir Probe(LAP), onboard the China Seismo-Electromagnetic Satellite(CSES), has been designed for in situ measurements of bulk parameters of the ionosphere plasma, the first Chinese application of in-situ measurement technology in the field of space exploration. The two main parameters measured by LAP are electron density and temperature. In this paper, a brief description of the LAP and its work mode are provided. Based on characteristics of the LAP, and assuming an ideal plasma environment, we introduce in detail a method used to invert the I-V curve; the data products that can be accessed by users are shown. Based on the LAP data available, this paper reports that events such as earthquakes and magnetic storms are preceded and followed by obvious abnormal changes. We suggest that LAP could provide a valuable data set for studies of space weather, seismic events, and the ionospheric environment.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02010000)Thorium Uranium Fuel Cycle Characteristics and Key Problem Research Project(No.QYZDY-SSW-JSC016)Shanghai Natural Science Foundation(No.19ZR1468000)。
文摘The production of radionuclides(90)^Sr and(131)^I in molten salt reactors is an attractive option to address the global shortage of radionuclides.This study evaluated the production characteristics of(90)^Sr and(131)^I in a modular molten salt reactor,such as equilibrium time,yield,and cooling time of isotopic impurities.The fuel burn-up of a small modular molten salt reactor was analyzed by the Triton module of the scale program,and the variation in the fission yields of the two nuclides and their precursors with burn-up time.The yield of(131)^I and~(131)Te has been increasing during the lifetime.131 I has an equilibrium time of about 40 days,a saturation activity of about 40,300 TBq,and while~(131)Te takes 250 min to reach equilibrium,the equilibrium activity was about 38,000 TBq.The yields of90 Sr and~(90)Kr decreased gradually,the equilibrium time of90 Kr was short,and(90)^Sr could not reach equilibrium.Based on the experimental data of molten salt reactor experiment,the amount of nuclide migration to the tail gas and the corresponding cooling time of the isotope impurities under different extraction methods were estimated.Using the HF-H_2 bubbling method,3.49×10^(5)TBq of(131)^I can be extracted from molten salt every year,and after13 days of cooling,the impurity content meets the medical requirements.Using the electric field method,1296 TBq of(131)^I can be extracted from the off-gas system(its cooling time is 11 days)and 109 TBq of(90)^Sr.The yields per unit power for(131)^I and(90)^Sr is approximately 1350 TBq/MW and 530 TBq/MW,respectively,which shows that molten salt reactors have a high economic value.