In this paper, a compound biped locomotion algorithm for a humanoid robot under development is presented. This paper is organized in two main parts. In the first part, it mainly focuses on the structural design for th...In this paper, a compound biped locomotion algorithm for a humanoid robot under development is presented. This paper is organized in two main parts. In the first part, it mainly focuses on the structural design for the humanoid. In the second part, the compound biped locomotion algorithm is presented based on the reference motion and reference Zero Moment Point (ZMP). This novel algorithm includes calculation of the upper body motion and trajectory of the Center of Gravity (COG) of the robot. First, disturbances from the environment are eliminated by the compensational movement of the upper body; then based on the error between a reference ZMP and the real ZMP as well as the relation between ZMP and CoG, the CoG error is calculated, thus leading to the CoG trajectory. Then, the motion of the robot converges to its reference motion, generating stable biped walking. Because the calculation of upper body motion and trajectory of CoG both depend on the reference motion, they can work in parallel, thus providing double insurances against the robot's collapse. Finally, the algorithm is validated by different kinds of simulation experiments.展开更多
基金supported by the National Natural Science Foundation of China (No.60375031)General Administration of Civil Aviation of China(No.60776816)the Natural Science Foundation of Guangdong Province (No.8251064101000005)
文摘In this paper, a compound biped locomotion algorithm for a humanoid robot under development is presented. This paper is organized in two main parts. In the first part, it mainly focuses on the structural design for the humanoid. In the second part, the compound biped locomotion algorithm is presented based on the reference motion and reference Zero Moment Point (ZMP). This novel algorithm includes calculation of the upper body motion and trajectory of the Center of Gravity (COG) of the robot. First, disturbances from the environment are eliminated by the compensational movement of the upper body; then based on the error between a reference ZMP and the real ZMP as well as the relation between ZMP and CoG, the CoG error is calculated, thus leading to the CoG trajectory. Then, the motion of the robot converges to its reference motion, generating stable biped walking. Because the calculation of upper body motion and trajectory of CoG both depend on the reference motion, they can work in parallel, thus providing double insurances against the robot's collapse. Finally, the algorithm is validated by different kinds of simulation experiments.