It is proposed to build a high-speed railway through the China‒Mongolia‒Russia economic corridor(CMREC)which runs from Beijing to Moscow via Mongolia.However,the frozen ground in this corridor has great impacts on the...It is proposed to build a high-speed railway through the China‒Mongolia‒Russia economic corridor(CMREC)which runs from Beijing to Moscow via Mongolia.However,the frozen ground in this corridor has great impacts on the infrastructure stability,especially under the background of climate warming and permafrost degradation.Based on the Bayesian Network Model(BNM),this study evaluates the suitability for engineering construction in the CMREC,by using 21 factors in five aspects of terrain,climate,ecology,soil,and frozen-ground thermal stability.The results showed that the corridor of Mongolia's Gobi and Inner Mongolia in China is suitable for engineering construction,and the corridor in Amur,Russia near the northern part of Northeast China is also suitable due to cold and stable permafrost overlaying by a thin active layer.However,the corridor near Petropavlovsk in Kazakhstan and Omsk in Russia is not suitable for engineering construction because of low freezing index and ecological vulnerability.Furthermore,the sensitivity analysis of influence factors indicates that the thermal stability of frozen ground has the greatest impact on the suitability of engineering construction.These conclusions can provide a reference basis for the future engineering planning,construction and risk assessment.展开更多
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA19070504)the National Natural Science Foundation of China(42176224)+1 种基金the State Key Laboratory of Frozen Soil Engineering,Northwest Institute of EcoEnvironment and Resources,Chinese Academy Sciences(SKLFSE202014)the Young Doctoral Fund of Higher Education of Gansu(2022QB-141).
文摘It is proposed to build a high-speed railway through the China‒Mongolia‒Russia economic corridor(CMREC)which runs from Beijing to Moscow via Mongolia.However,the frozen ground in this corridor has great impacts on the infrastructure stability,especially under the background of climate warming and permafrost degradation.Based on the Bayesian Network Model(BNM),this study evaluates the suitability for engineering construction in the CMREC,by using 21 factors in five aspects of terrain,climate,ecology,soil,and frozen-ground thermal stability.The results showed that the corridor of Mongolia's Gobi and Inner Mongolia in China is suitable for engineering construction,and the corridor in Amur,Russia near the northern part of Northeast China is also suitable due to cold and stable permafrost overlaying by a thin active layer.However,the corridor near Petropavlovsk in Kazakhstan and Omsk in Russia is not suitable for engineering construction because of low freezing index and ecological vulnerability.Furthermore,the sensitivity analysis of influence factors indicates that the thermal stability of frozen ground has the greatest impact on the suitability of engineering construction.These conclusions can provide a reference basis for the future engineering planning,construction and risk assessment.