期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Boron-doped high-entropy oxide toward high-rate and long-cycle layered cathodes for wide-temperature sodium-ion batteries 被引量:1
1
作者 Yuzhen Dang Zhe Xu +8 位作者 Yurong Wu runguo zheng Zhiyuan Wang Xiaopin Lin Yanguo Liu zheng-Yao Li Kai Sun Dongfeng Chen Dan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期577-587,I0012,共12页
03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose sig... 03-type layered metal oxides hold great promise for sodium-ion batteries cathodes owing to their energy density advantage.However,the severe irreversible phase transition and sluggish Na^(+)diffusion kinetics pose significant challenges to achieve high-performance layered cathodes.Herein,a boron-doped03-type high entropy oxide Na(Fe_(0.2)Co_(0.15)Cu_(0.05)Ni_(0.2)Mn_(0.2)Ti_(0.2))B_(0.02)O_(2)(NFCCNMT-B_(0.02))is designed and the covalent B-O bonds with high entropy configuration ensure a robust layered structure.The obtained cathode NFCCNMT-B_(0.02)exhibits impressive cycling performance(capacity retention of 95%and 82%after100 cycles and 300 cycles at 1 and 10 C,respectively)and outstanding rate capability(capacity of 83 mAh g^(-1)at 10 C).Furthermore,the NFCCNMT-B_(0.02)demonstrates a superior wide-temperature performance,maintaining the same capacity level(113,4 mAh g^(-1)@-20℃,121 mAh g^(-1)@25℃,and 119 mAh g^(-1)@60℃)and superior cycle stability(90%capacity retention after 100 cycles at 1 C at-20℃).The high-entropy configuration design with boron doping strategy contributes to the excellent sodium-ion storage performance.The high-entropy configuration design effectively suppresses irreversible phase transitions accompanied by small volume changes(ΔV=0.65 A3).B ions doping expands the Na layer distance and enlarges the P3 phase region,thereby enhancing Na^(+)diffusion kinetics.This work offers valuable insights into design of high-performance layered cathodes for sodium-ion batteries operating across a wide temperature. 展开更多
关键词 High entropy oxide Born substitution Phase transition Na~+diffusion kinetics Sodium-ion batteries
下载PDF
Modification,application and expansion of electrode materials based on cobalt telluride
2
作者 Huilin Fan Yao Dai +7 位作者 Xiaoyun Xue runguo zheng Yuan Wang Hamidreza Arandiyan Zhiyuan Wang Zongping Shao Hongyu Sun Yanguo Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期710-737,I0015,共29页
Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overa... Metal(Li,Na,K,Al)-ion batteries and lithium-sulfur and lithium-tellurium batteries are gaining recognition for their eco-friendly characteristics,substantial energy density,and sustainable attributes.However,the overall performance of rechargeable batteries heavily depends on their electrode materials.Transition metal tellurides have recently gained significant attention due to their high electrical conductivity and density.Cobalt telluride has received the most extensive research due to its catalytic activity,unique magnetic properties,and diverse composition and crystal structure.Nevertheless,its limited conductivity and significant volume variation contribute to electrode structural deterioration and rapid capacity decline.This review comprehensively summarizes recent advances in rational design and synthesis of modified cobalt telluride-based electrodes,encompassing defect engineering(Te vacancies,cation vacancies,heterointerfaces,and homogeneous interfaces)and composite engineering(derived carbon from precursors,carbon fibers,Mxene,graphene nanosheets,etc.).Particularly,the intricate evolution mechanisms of the conversion reaction process during cycling are elucidated.Furthermore,these modified strategies applied to other transitional metal tellurides,such as iron telluride,nickel telluride,zinc telluride,copper telluride,molybdenum telluride,etc.,are also thoroughly summarized.Additionally,their application extends to emerging aqueous zinc-ion batteries.Finally,potential challenges and prospects are discussed to further propel the development of transition metal tellurides electrode materials for next-generation rechargeable batteries. 展开更多
关键词 Rechargeable batteries Transition metal tellurides Cobalt telluride Defect engineering Composite engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部