Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperatur...Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.展开更多
We demonstrate a robust femtosecond LIDAR setup by using two free-running environmentally stable allpolarization-maintaining nonlinear amplified loop mirror mode-locked fiber lasers. Based on the asynchronous optical ...We demonstrate a robust femtosecond LIDAR setup by using two free-running environmentally stable allpolarization-maintaining nonlinear amplified loop mirror mode-locked fiber lasers. Based on the asynchronous optical sampling method, a ranging accuracy of ±2 μm within 65 m has been achieved, as tested in an 80-m-long underground optical tunnel. Through the Kalman filter in real-time data processing, the measurement accuracy can be maintained at a 200 Hz update rate. This setup provides a practical tool for various large-scale industrial and astronomical ranging applications.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.61475162,61675150,and 61535009)Tianjin Natural Science Foundation (Grant No.18JCYBJC16900)Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.17JCJQJC43500)
文摘Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
基金supported by the Natural Science Foundation of Tianjin(No.18JCYBJC16900)the National Natural Science Foundation of China(NSFC)(Nos.61675150,61827821,and 61535009)
文摘We demonstrate a robust femtosecond LIDAR setup by using two free-running environmentally stable allpolarization-maintaining nonlinear amplified loop mirror mode-locked fiber lasers. Based on the asynchronous optical sampling method, a ranging accuracy of ±2 μm within 65 m has been achieved, as tested in an 80-m-long underground optical tunnel. Through the Kalman filter in real-time data processing, the measurement accuracy can be maintained at a 200 Hz update rate. This setup provides a practical tool for various large-scale industrial and astronomical ranging applications.