Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabrica...Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives.展开更多
The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of...The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of FeN_(4)has an essential impact on the catalytic performance.Herein,we construct a sulfur-modified Fe-N-C catalyst with controllable local coordination environment,where the Fe is coordinated with four in-plane N and an axial external S.The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN_(4)active site.The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons.With the above characteristics,the adsorption and desorption of the reactants at FeN_(4)active sites are optimized,thus promoting the oxygen reduction reaction activity.This work explores the key point in electronic configuration and coordination environment tuning of FeN_(4)through S doping and provides new insight into the construction of M-N-C-based oxygen reduction reaction catalysts.展开更多
Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.H...Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.Here,we develop a strategy to dilute catalytically active metal interatomic spacing(d_(M-M))with light atoms and discover the unusual adsorption patterns.For example,by elevating the content of boron as interstitial atoms,the atomic spacing of osmium(d_(Os-Os))gradually increases from 2.73 to 2.96?.More importantly,we find that,with the increase in dOs-Os,the hydrogen adsorption-distance relationship is reversed via downshifting d-band states,which breaks the traditional cognition,thereby optimizing the H adsorption and H_2O dissociation on the electrode surface during the catalytic process;this finally leads to a nearly linear increase in hydrogen evolution reaction activity.Namely,the maximum dOs-Os of 2.96?presents the optimal HER activity(8 mV@10 mA cm^(-2))in alkaline media as well as suppressed O adsorption and thus promoted stability.It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.展开更多
Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated str...Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated strategy to anchor Co species on N-doped carbon nanorods for efficient ORR.Featuring ultrahigh N-doping(10.29 at.%),monodisperse Co nanocrystal decoration,and well-dispersed Co-N_(x)functionalization,the obtained Co-decorated N-doped carbon nanorods(Co@NCNR)exhibit a decent ORR performance comparable to commercial Pt/C in alkaline media.Aqueous ZABs have been assembled using Co@NCNR as the cathode catalyst.The assembled ZABs manifest high initial open-circuit voltage as well as high energy density.In addition,the Co@NCNR also demonstrates ideal ORR performance in quasi-solid-state ZABs.展开更多
Exploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that t...Exploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that the activity of electrocatalysts exhibits a strong dependence on the surface electronic structure.Herein,a series of ultrathin metal silicate hydroxide nanosheets(UMSHNs)M_(3)Si_(2)O_(5)(OH)_(4)(M=Fe,Co,and Ni)synthesized without surfactant are introduced as highly active OER electrocatalysts.Cobalt silicate hydroxide nanosheets show an optimal OER activity with overpotentials of 287 and 358 m V at 1 and 10 m A cm^(-2),respectively.Combining experimental and theoretical studies,it is found that the OER activity of UMSHNs is dominated by the metal-oxygen covalency(MOC).High OER activity can be achieved by having a moderate MOC as reflected by aσ^(*)-orbital(e_(g))filling near unity and moderate[3d]/[2p]ratio.Moreover,the UMSHNs exhibit favorable chemical stability under oxidation potential.This contribution provides a scientific guidance for further development of active metal silicate hydroxide catalysts.展开更多
Metal silicate hydroxides have been recognized as efficient oxygen evolution reaction(OER)electrocatalysts,yet tailoring of their intrinsic activity remains confused.Herein,Fe had been incorporated into cobalt silicat...Metal silicate hydroxides have been recognized as efficient oxygen evolution reaction(OER)electrocatalysts,yet tailoring of their intrinsic activity remains confused.Herein,Fe had been incorporated into cobalt silicate hydroxide nanosheets and the resulted material achieves a competitive OER catalytic activity.It is found that the doping state obviously affects the electrical transport property.Specifically,highly dispersed Fe atoms(low-concentration Fe doping)trigger slight electron transfer to Co atoms while serried Fe(highconcentration Fe doping)attract vast electrons.By introducing 6 at.%Fe doping,partial relatively inert Co sites are activated by atomically dispersed Fe,bearing an optimal metal 3d electronic occupation and adsorption capacity to oxygen intermediate.The introduced Co-O-Fe unit trigger the p-donation effect and decrease the number of electrons in p*-antibonding orbitals,which enhance the Fe-O covalency and the structural stability.As a result,the sample delivers a low overpotential of 293 mV to achieve a current density of 10 mA cm^(-2).This work clarifies the superiority of atomically dispersed doping state,which is of fundamental interest to the design of doped catalyst.展开更多
Garnet-type solid-state electrolytes(SSEs)are a remarkable Li-ion electrolyte for the realization of next-generation all-solid-state lithium batteries due to their excellent stability against Li metal as well as high ...Garnet-type solid-state electrolytes(SSEs)are a remarkable Li-ion electrolyte for the realization of next-generation all-solid-state lithium batteries due to their excellent stability against Li metal as well as high ionic conductivities at room temperature.However,garnet electrolytes always contain undesired and hardly removable Li_(2)CO_(3) contaminations that have persistently large resistance and unstable interface contact with Li metal.This is a critical bottleneck for the practical application of garnet electrolytes.Here,we design a novel strategy to completely root out Li_(2)CO_(3) both inside and on the surface of garnet.This is achieved by a so-called double replacement reaction between Li_(2)CO_(3) and SiO_(2) during one-step hot press process for garnet electrolyte densification.It leads to in-situ transformation of LixSiOy(LSO)mostly locating around the grain boundaries of garnet.Due to the higher ion conductivity and better electrochemistry stability of LSO than Li_(2)CO_(3),the modified garnet electrolyte shows much improved electrochemical performance.Moreover,the wettability between modified garnet electrolyte and lithium metals was significantly enhanced in the absence of surface Li_(2)CO_(3).As a proof of concept,an assembled Li symmetric cell with modified garnet electrolyte displays a high critical current density(CCD)of 0.7 mA cm^(-2)and a low interfacial impedance(5Ωcm^(2))at 25℃.These results indicate that the upcycling of Li_(2)CO_(3)is a promising strategy to well-address the degradation and interfacial issue associated with garnet electrolytes.展开更多
Bismuth has garnered significant interest as an anode material for magnesium batteries(MBs) because of its high volumetric specific capacity and low working potential. Nonetheless, the limited cycling performance(≤10...Bismuth has garnered significant interest as an anode material for magnesium batteries(MBs) because of its high volumetric specific capacity and low working potential. Nonetheless, the limited cycling performance(≤100 cycles) limits the practical application of Bi as anode for MBs. Therefore, the improvement of Bi cycling performance is of great significance to the development of MBs and is also full of challenges. Here, Bi nanoparticles encapsulated in nitrogen-doped carbon with single-atom Bi embedded(Bi@NC) are prepared and reported as an anode material for MBs. Bi@NC demonstrates impressive performance, with a high discharge capacity of 347.5 mAh g^(-1) and good rate capability(206.4 mAh g^(-1)@500 mA g^(-1)) in a fluoride alkyl magnesium salt electrolyte. In addition, Bi@NC exhibits exceptional long-term stability, enduring 400 cycles at 500 mA g^(-1). To the best of our knowledge, among reported Bi and Bi-based compounds for MBs, Bi@NC exhibits the longest cycle life in this work. The magnesium storage mechanism of Bi@NC is deeply studied through X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. This work provides some guidance for further improving the cycling performance of other alloy anodes in MBs.展开更多
Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and h...Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and huge volume change seriously limit the development of lithium metal batteries.To overcome these challenges,an ordered mesoporous N-doped carbon with lithiophilic single atoms is proposed to induce uniform nucleation and deposition of Li metal.Benefiting from the synergistic effects of interconnected three-dimensional ordered mesoporous structures and abundant lithiophilic single-atom sites,regulated local current density and rapid mass transfer can be achieved,leading to the uniform Li deposition with inhibition of dendrites and buffered volume expansion.As a result,the as-fabricated anode exhibits a high CE of 99.8%for 200 cycles.A stable voltage hysteresis of 14 mV at 5 mA cm^(−2)could be maintained for more than 1330 h in the symmetric cell.Furthermore,the full cell coupled with commercial LiFePO_(4)exhibits high reversible capacity of 108 mAh g^(−1)and average Coulombic efficiency of 99.8%from 5th to 350th cycles at 1 C.The ordered mesoporous carbon host with abundant lithiophilic single-atom sites delivers new inspirations into rational design of high-performance Li metal anodes.展开更多
Most oxygen evolution reaction(OER)electrocatalysts show poor stability under industrial alkaline conditions(20–30 wt.%KOH).Therefore,it is essential to develop stable,efficient,and low-cost OER catalysts for industr...Most oxygen evolution reaction(OER)electrocatalysts show poor stability under industrial alkaline conditions(20–30 wt.%KOH).Therefore,it is essential to develop stable,efficient,and low-cost OER catalysts for industrial water electrolysis.Herein,we present a straightforward approach for the complete electrochemical reconstruction of Ni-BDC,a Ni-based metal-organic framework,for OER.This method involves the continuous release of Fe^(3+)from Fe foam counter electrode in a high-concentration(6.0 M,25 wt.%)KOH solution.The continuously Fe^(3+)releasing not only realizes in situ Fe^(3+)doping,but also introduces abundant defects in the obtained catalyst during cyclic voltammetry activation,thereby accelerating the electrochemical reconstruction.The reconstructed OER catalyst(Fe-doped nickel hydroxide/oxyhydroxide nanosheets supported on Ni foam,Fe-NiO_(x)(OH)y/NF)manifests a low overpotential of 217 mV at 10 mA cm^(-2)and 263 m V at 100 m A cm^(-2)in 1.0 M KOH.Noteworthy,the Fe-NiO_(x)(OH)_(y)/NF also demonstrates high stability in 30 wt.%KOH.This strategy of regulating the electrochemical reconstruction process sheds light on the construction of stable and efficient OER catalysts for industrial water electrolysis.展开更多
Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin ...Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin 2D Sn_(4)P_(3) nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn_(4)P_(3) nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn_(4)P_(3) nanosheets display an exceptional initial capacity of 1088 mAh·g^(−1), nearing the theoretical value of 1230 mAh·g^(−1). Furthermore, we reveal their high-rate property as well as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn_(4)P_(3), marking a significant advancement in developing high-performance energy storage systems.展开更多
Aqueous zinc-ion batteries(AZIBs)are promising for large-scale energy storage,but their development is plagued by inadequate cycle life.Here,for the first time,we reveal an unusual phenomenon of cathodic underpotentia...Aqueous zinc-ion batteries(AZIBs)are promising for large-scale energy storage,but their development is plagued by inadequate cycle life.Here,for the first time,we reveal an unusual phenomenon of cathodic underpotential deposition(UPD)of Zn,which is highly irreversible and considered the origin of the inferior cycling stability of AZIBs.Combining experimental and theoretical simulation approaches,we propose that the UPD process agrees with a two-dimensional nucleation and growth model,following a thermodynamically feasible mechanism.Furthermore,the universality of Zn UPD is identified in systems,including VO_(2)//Zn,TiO_(2)//Zn,and SnO_(2)//Zn.In practice,we propose and successfully implement removing cathodic Zn UPD and substantially mitigate the degradation of the battery by controlling the end-ofdischarge voltage.This work provides new insights into AZIBs degradation and brings the cathodic UPD behavior of rechargeable batteries into the limelight.展开更多
Designing synergistic heterogeneous catalytic interfaces is the key to developing highly compatible pH-universal electrocatalysts for complex chemical environments.Our theoretical calculation results demonstrate that ...Designing synergistic heterogeneous catalytic interfaces is the key to developing highly compatible pH-universal electrocatalysts for complex chemical environments.Our theoretical calculation results demonstrate that the Ru-Ru2P heterointerface can not only promote the redistribution of charges,but also reduce the d-band center,and then enhances the adsorption capacity of the key intermediate.However,in situ and facile synthesis of Ru-Ru2P heterostructures is severely limited by thermodynamic obstacles.Herein,we propose a molten salt-assisted catalytic synthesis scheme,and successfully build a series of homologous metallic Ru-Ru2P heterostructure catalysts with different molar ratios of Ru to P under atmospheric pressure and low-temperature(400C).The resultant Ru-Ru2P with rich heterostructures show the Pt-like HER performance in different pH media.Particularly,it is prominent under alkaline conditions(18 mV@10 mA cm^(2)),which outperforms the Pt catalyst(37 mV@10 mA cm^(2)).Furthermore,Ru-Ru2P heterostructures also show certain potential in the electrolysis of seawater to produce hydrogen.This work represents a significant supplement of high-efficiency pH-universal HER catalysts,and provides a new light on interface engineering in energy technology fields and beyond.展开更多
单质硅是一种有潜力的高容量锂离子电池负极材料.然而,受限于充放电过程中巨大的体积膨胀,其循环性能并不理想.在这个工作中,我们设计了一种独特的三组分复合负极材料(Si/Cr_(2)O_(3)/C),其中Si纳米颗粒被限域在碳包覆的氧化铬多层空心...单质硅是一种有潜力的高容量锂离子电池负极材料.然而,受限于充放电过程中巨大的体积膨胀,其循环性能并不理想.在这个工作中,我们设计了一种独特的三组分复合负极材料(Si/Cr_(2)O_(3)/C),其中Si纳米颗粒被限域在碳包覆的氧化铬多层空心球(MSHSs)中.得益于Cr_(2)O_(3)/C基体的体积变化缓冲能力与优异的结构稳定性,将Si纳米颗粒封装在MSHSs中可以有效地提高其电化学性能.合理的结构设计赋予了Si/Cr_(2)O_(3)/C三组分复合材料高的可逆容量(在100 mA g^(-1)的电流密度下,比容量为1351 mA h g^(-1))和稳定的循环性能(在500 mA g^(-1)的电流密度下,循环300次后比容量保持在716 mA h g^(-1)).这一工作提出了一种多壳层空心结构设计的新思路,以解决硅基负极材料循环性差的瓶颈.展开更多
Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium me...Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium metal anode.To avoid or alleviate these problems,the exploitation of alternative anode materials is a promising choice.Herein,we present titanium pyrophosphate(TiP_(2)O_(7))as anode materials for magnesium-ion batteries(MIBs)and investigate the effect of the crystal phase on its magnesium storage performance.Compared with the me-tastable layered TiP_(2)O_(7),the thermodynamically stable cubic TiP_(2)O_(7) displays a better rate capability of 72 mAh g^(−1) at 5000 mA g^(−1).Moreover,cubic TiP_(2)O_(7) exhibits excellent cycling stability with the capacity of 60 mAh g^(−1) after 5000 cycles at 1000 mA g^(−1),which are better than pre-viously reported Ti-based anode materials for MIBs.In situ X-ray diffraction technology confirms the single-phase magnesiumion inter-calation/deintercalation reaction mechanism of cubic TiP_(2)O_(7) with a low volume change of 3.2%.In addition,the density functional theory calcu-lation results demonstrate that three-dimensional magnesiumion diffu-sion can be allowed in cubic TiP_(2)O_(7) with a low migration energy barrier of 0.62 eV.Our work demonstrates the promise of TiP_(2)O_(7) as high-rate and long-life anode materials for MIBs and may pave the way for further development of MIBs.展开更多
Strain engineering is a promising method for tuning the electronic properties of two-dimensional(2 D)materials,which are capable of sustaining enormous strain thanks to their atomic thinness.However,applying a large a...Strain engineering is a promising method for tuning the electronic properties of two-dimensional(2 D)materials,which are capable of sustaining enormous strain thanks to their atomic thinness.However,applying a large and homogeneous strain on these 2D materials,including the typical semiconductor MoS_(2),remains cumbersome.Here we report a facile strategy for the fabrication of highly strained MoS_(2) via chalcogenide substitution reaction(CSR)of MoTe_(2) with lattice inheritance.The MoS_(2)resulting from the sulfurized MoTe_(2) sustains ultra large in-plane strain(approaching its strength limit~10%)with great homogeneity.Furthermore,the strain can be deterministically and continuously tuned to~1.5%by simply varying the processing temperature.Thanks to the fine control of our CSR process,we demonstrate a heterostructure of strained MoS_(2)/MoTe_(2)with abrupt interface.Finally,we verify that such a large strain potentially allows the modulation of MoS_(2) bandgap over an ultra-broad range(~1 e V).Our controllable CSR strategy paves the way for the fabrication of highly strained 2D materials for applications in devices.展开更多
Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety ...Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety need further improvement for practical applications.Investigations on the reaction mechanisms and structural degradation when cycling are of great importance.In situ transmission electron microscopy(TEM)is one of the most significant techniques to understand and monitor electrochemical processes at an atomic scale with real-time imaging.In this review,the current progress in unraveling reaction mechanisms of electrode materials for SIBs and PIBs via in situ TEM is summarized.First,the importance of in situ TEM is highlighted.Then,based on the three types of electrochemical reaction,i.e.,intercalation reac-tion,conversion reaction and alloying reaction,the structural evolution and reaction kinetics at atomic resolution,and their relation to the electrochemical performance of electrode materials are reviewed and described in detail.Fi-nally,future directions of in situ TEM for SIBs and PIBs are proposed.Therefore,the in‐depth understanding revealed by in situ TEM will give an instructive guide in rational design of electrode materials for high performance electrode materials of SIBs and PIBs.展开更多
Carbon-based electrodes of potassium-ion batteries are of great research interest ascribed to their low cost and environmentally friendly distinctions.However,traditional carbon materials usually exhibit weak mechanic...Carbon-based electrodes of potassium-ion batteries are of great research interest ascribed to their low cost and environmentally friendly distinctions.However,traditional carbon materials usually exhibit weak mechanical properties and incomplete crosslinking,resulting in poor stability and electrochemical performance.Herein,we report a new strategy for modifying reduced graphene oxide into a uniform few-layer structure through a sol–gel method combined with acid etching treatment.The obtained chemical cross-linking and mechanically reinforced carbon network constructed by graphene(CNCG)demonstrates excellent electrochemical and mechanical properties.Adopted as a free-standing anode(~7 mg·cm^(−2))for potassium ion battery,the asachieved CNCG delivers a high reversible specific capacity of 317.7 mAh·g^(−1) at a current density of 50 mA·g^(−1) and admirable cycle stability(208.4 mAh·g^(−1) at 50 mA·g^(−1) after 500 cycles).The highly reversible structural stability and fully cross-linked properties during potassiation are revealed by ex-situ characterization.This work provides new ideas for the synthesis of new carbon materials and the development of high-performance electrodes.展开更多
Background:Interleukin-21(IL-21)has a regulatory effect on various immune cells.Its effect on macrophage function remains unclear.Aims:This study aimed to investigate the effect of IL-21 on the macrophagesmediated inf...Background:Interleukin-21(IL-21)has a regulatory effect on various immune cells.Its effect on macrophage function remains unclear.Aims:This study aimed to investigate the effect of IL-21 on the macrophagesmediated inflammatory response and explore its mechanism.Materials&Methods:Phorbol myristate acetate was used to induce THP-1-derived macrophages.Then,cells were stimulated with IL-21 and/or lipopolysaccharide(LPS).To determine the effect of IL-21 on the production of inflammatory factors in THP-1-derived macrophages,the messenger RNA(mRNA)and protein levels of IL-6,tumor necrosis factor-α(TNF-α),IL-8,and IL-10 were detected by real-time polymerase chain reaction(RT-PCR)and enzyme-linked immunosorbent assay(ELISA),respectively.Meanwhile,to explore the effect of IL-21 on macrophage polarization,macrophage phenotype,gene expression,and cytokine secretion mediated by THP-1-derived macrophage were detected by flow cytometry,RT-PCR,and ELISA.Results:First,we found that the IL-21 receptor was expressed in THP-1-derived macrophages.IL-21 enhanced LPS-mediated TNF-α,IL-6,and IL-10 production in THP-1-derived macrophages.During the polarization of THP-1-derived macrophages to M1-like macrophages,IL-21 induced the expression of macrophage surface markers CD86 and CD80,and related genes,such as TNF-α,IL-6,IL-1β,and DC-SIGN mRNA,inhibited Dectin-1 mRNA expression and promoted the secretion of TNF-α.During the polarization of THP-1-derived macrophages to M2-like macrophages,IL-21 enhanced the expression of macrophage surface markers CD86 and CD163,and related genes,such as TNF-α,IL-1β,IL-10,Dectin-1,and DC-SIGN mRNA,and promoted the secretion of IL-10.Conclusion:IL-21 promotes LPS-mediated production of inflammatory cytokines by THP-1-derived macrophages;IL-21 plays a two-way regulatory role in THP-1-derived macrophage polarization.展开更多
基金funded by the Hong Kong Research Grants Council(25201620/C6001-22Y)the Hong Kong Innovation Technology Commission(ITC)under project No.MHP/060/21support of the State Key Laboratory of Advanced Displays and Optoelectronics Technologies at HKUST.
文摘Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0715000)the National Natural Science Foundation of China(Grant No.52127816)+2 种基金supported by the U.S.Department of Energy(DOE),Office of Energy Efficiency and Renewable Energy,Vehicle Technologies Officethe DOE Office of Science by UChicago Argonne LLC under contract no.DE-AC02-06CH11357the Advanced Photon Source(APS),a U.S.Department of Energy(DOE)Office of Science User Facility,operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357
文摘The Fe-N-C material represents an attractive oxygen reduction reaction electrocatalyst,and the FeN_(4)moiety has been identified as a very competitive catalytic active site.Fine tuning of the coordination structure of FeN_(4)has an essential impact on the catalytic performance.Herein,we construct a sulfur-modified Fe-N-C catalyst with controllable local coordination environment,where the Fe is coordinated with four in-plane N and an axial external S.The external S atom affects not only the electron distribution but also the spin state of Fe in the FeN_(4)active site.The appearance of higher valence states and spin states for Fe demonstrates the increase in unpaired electrons.With the above characteristics,the adsorption and desorption of the reactants at FeN_(4)active sites are optimized,thus promoting the oxygen reduction reaction activity.This work explores the key point in electronic configuration and coordination environment tuning of FeN_(4)through S doping and provides new insight into the construction of M-N-C-based oxygen reduction reaction catalysts.
基金financially sponsored by the National Natural Science Foundation of China(Grant Nos.22075223,22179104)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2022-ZD-4)。
文摘Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism,but still remains a challenge.Here,we develop a strategy to dilute catalytically active metal interatomic spacing(d_(M-M))with light atoms and discover the unusual adsorption patterns.For example,by elevating the content of boron as interstitial atoms,the atomic spacing of osmium(d_(Os-Os))gradually increases from 2.73 to 2.96?.More importantly,we find that,with the increase in dOs-Os,the hydrogen adsorption-distance relationship is reversed via downshifting d-band states,which breaks the traditional cognition,thereby optimizing the H adsorption and H_2O dissociation on the electrode surface during the catalytic process;this finally leads to a nearly linear increase in hydrogen evolution reaction activity.Namely,the maximum dOs-Os of 2.96?presents the optimal HER activity(8 mV@10 mA cm^(-2))in alkaline media as well as suppressed O adsorption and thus promoted stability.It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.
基金supported by the National Natural Science Foundation of China(52072283)the National Key Research and Development Program of China(2020YFA0715000)+1 种基金Shenzhen Fundamental Research Program(JCYJ20190809114409397)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘Developing efficient oxygen reduction reaction(ORR)catalyst is essential for the practical application of Zn-air batteries(ZABs).In this contribution,we develop a novel zeolitic imidazolate framework(ZIF)-mediated strategy to anchor Co species on N-doped carbon nanorods for efficient ORR.Featuring ultrahigh N-doping(10.29 at.%),monodisperse Co nanocrystal decoration,and well-dispersed Co-N_(x)functionalization,the obtained Co-decorated N-doped carbon nanorods(Co@NCNR)exhibit a decent ORR performance comparable to commercial Pt/C in alkaline media.Aqueous ZABs have been assembled using Co@NCNR as the cathode catalyst.The assembled ZABs manifest high initial open-circuit voltage as well as high energy density.In addition,the Co@NCNR also demonstrates ideal ORR performance in quasi-solid-state ZABs.
基金supported by the NationallNaturallScience Foundation of China(51832004,51521001,51872218)the NationallKey Research and Development Program of China(2016YFA0202603)+3 种基金the Programme of Introducing Talents of Discipline to Universities(B17034)the Yellow Crane Talent(Science&Technology)Program of Wuhan CityFoshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)the FundamentallResearch Funds for the CentrallUniversities(195101005)。
文摘Exploring efficient,cost-effective,and durable electrocatalysts for electrochemical oxygen evolution reaction(OER)is pivotal for the large-scale application of water electrolysis.Recent advance has demonstrated that the activity of electrocatalysts exhibits a strong dependence on the surface electronic structure.Herein,a series of ultrathin metal silicate hydroxide nanosheets(UMSHNs)M_(3)Si_(2)O_(5)(OH)_(4)(M=Fe,Co,and Ni)synthesized without surfactant are introduced as highly active OER electrocatalysts.Cobalt silicate hydroxide nanosheets show an optimal OER activity with overpotentials of 287 and 358 m V at 1 and 10 m A cm^(-2),respectively.Combining experimental and theoretical studies,it is found that the OER activity of UMSHNs is dominated by the metal-oxygen covalency(MOC).High OER activity can be achieved by having a moderate MOC as reflected by aσ^(*)-orbital(e_(g))filling near unity and moderate[3d]/[2p]ratio.Moreover,the UMSHNs exhibit favorable chemical stability under oxidation potential.This contribution provides a scientific guidance for further development of active metal silicate hydroxide catalysts.
基金supported by the National Key Research and Development Program of China(2020YFA0715004)National Natural Science Foundation of China(51832004)+1 种基金Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003)the Fundamental Research Funds for the Central Universities(195101005,2020-CL-A1-28,2020Ⅲ004GX).
文摘Metal silicate hydroxides have been recognized as efficient oxygen evolution reaction(OER)electrocatalysts,yet tailoring of their intrinsic activity remains confused.Herein,Fe had been incorporated into cobalt silicate hydroxide nanosheets and the resulted material achieves a competitive OER catalytic activity.It is found that the doping state obviously affects the electrical transport property.Specifically,highly dispersed Fe atoms(low-concentration Fe doping)trigger slight electron transfer to Co atoms while serried Fe(highconcentration Fe doping)attract vast electrons.By introducing 6 at.%Fe doping,partial relatively inert Co sites are activated by atomically dispersed Fe,bearing an optimal metal 3d electronic occupation and adsorption capacity to oxygen intermediate.The introduced Co-O-Fe unit trigger the p-donation effect and decrease the number of electrons in p*-antibonding orbitals,which enhance the Fe-O covalency and the structural stability.As a result,the sample delivers a low overpotential of 293 mV to achieve a current density of 10 mA cm^(-2).This work clarifies the superiority of atomically dispersed doping state,which is of fundamental interest to the design of doped catalyst.
基金financial support from the National Natural Science Foundation of China(Grant No.11804261)National Key Research and Development Program of China(Grant No.2019YFA0704900)。
文摘Garnet-type solid-state electrolytes(SSEs)are a remarkable Li-ion electrolyte for the realization of next-generation all-solid-state lithium batteries due to their excellent stability against Li metal as well as high ionic conductivities at room temperature.However,garnet electrolytes always contain undesired and hardly removable Li_(2)CO_(3) contaminations that have persistently large resistance and unstable interface contact with Li metal.This is a critical bottleneck for the practical application of garnet electrolytes.Here,we design a novel strategy to completely root out Li_(2)CO_(3) both inside and on the surface of garnet.This is achieved by a so-called double replacement reaction between Li_(2)CO_(3) and SiO_(2) during one-step hot press process for garnet electrolyte densification.It leads to in-situ transformation of LixSiOy(LSO)mostly locating around the grain boundaries of garnet.Due to the higher ion conductivity and better electrochemistry stability of LSO than Li_(2)CO_(3),the modified garnet electrolyte shows much improved electrochemical performance.Moreover,the wettability between modified garnet electrolyte and lithium metals was significantly enhanced in the absence of surface Li_(2)CO_(3).As a proof of concept,an assembled Li symmetric cell with modified garnet electrolyte displays a high critical current density(CCD)of 0.7 mA cm^(-2)and a low interfacial impedance(5Ωcm^(2))at 25℃.These results indicate that the upcycling of Li_(2)CO_(3)is a promising strategy to well-address the degradation and interfacial issue associated with garnet electrolytes.
基金supported by the National Natural Science Foundation of China (51972259,52127816,and 52202290)the National Key Research and Development Program of China (2020YFA0715000)+1 种基金the Natural Science Foundation of Hubei Province (2022CFA087)the funding support from China Scholarship Council/University College London for the joint Ph.D.scholarship (CXXM2110070005)。
文摘Bismuth has garnered significant interest as an anode material for magnesium batteries(MBs) because of its high volumetric specific capacity and low working potential. Nonetheless, the limited cycling performance(≤100 cycles) limits the practical application of Bi as anode for MBs. Therefore, the improvement of Bi cycling performance is of great significance to the development of MBs and is also full of challenges. Here, Bi nanoparticles encapsulated in nitrogen-doped carbon with single-atom Bi embedded(Bi@NC) are prepared and reported as an anode material for MBs. Bi@NC demonstrates impressive performance, with a high discharge capacity of 347.5 mAh g^(-1) and good rate capability(206.4 mAh g^(-1)@500 mA g^(-1)) in a fluoride alkyl magnesium salt electrolyte. In addition, Bi@NC exhibits exceptional long-term stability, enduring 400 cycles at 500 mA g^(-1). To the best of our knowledge, among reported Bi and Bi-based compounds for MBs, Bi@NC exhibits the longest cycle life in this work. The magnesium storage mechanism of Bi@NC is deeply studied through X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. This work provides some guidance for further improving the cycling performance of other alloy anodes in MBs.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the National Natural Science Foundation of China(51832004,52127816)+2 种基金the Programme of Introducing Talents of Discipline to Universities(B17034)China,Foshan Xianhu Laboratory of the Advanced Energy Science,China and Technology Guangdong Laboratory(XHT2020-003)the project supported by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(WUT:2022-KF-5).
文摘Attributing to the high specific capacity and low electrochemical reduction potential,lithium(Li)metal is regarded as the most promising anode for high-energy Li batteries.However,the growth of lithium dendrites and huge volume change seriously limit the development of lithium metal batteries.To overcome these challenges,an ordered mesoporous N-doped carbon with lithiophilic single atoms is proposed to induce uniform nucleation and deposition of Li metal.Benefiting from the synergistic effects of interconnected three-dimensional ordered mesoporous structures and abundant lithiophilic single-atom sites,regulated local current density and rapid mass transfer can be achieved,leading to the uniform Li deposition with inhibition of dendrites and buffered volume expansion.As a result,the as-fabricated anode exhibits a high CE of 99.8%for 200 cycles.A stable voltage hysteresis of 14 mV at 5 mA cm^(−2)could be maintained for more than 1330 h in the symmetric cell.Furthermore,the full cell coupled with commercial LiFePO_(4)exhibits high reversible capacity of 108 mAh g^(−1)and average Coulombic efficiency of 99.8%from 5th to 350th cycles at 1 C.The ordered mesoporous carbon host with abundant lithiophilic single-atom sites delivers new inspirations into rational design of high-performance Li metal anodes.
基金supported by the China Postdoctoral Science Foundation(2022T150502)the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program(TC220H06N)。
文摘Most oxygen evolution reaction(OER)electrocatalysts show poor stability under industrial alkaline conditions(20–30 wt.%KOH).Therefore,it is essential to develop stable,efficient,and low-cost OER catalysts for industrial water electrolysis.Herein,we present a straightforward approach for the complete electrochemical reconstruction of Ni-BDC,a Ni-based metal-organic framework,for OER.This method involves the continuous release of Fe^(3+)from Fe foam counter electrode in a high-concentration(6.0 M,25 wt.%)KOH solution.The continuously Fe^(3+)releasing not only realizes in situ Fe^(3+)doping,but also introduces abundant defects in the obtained catalyst during cyclic voltammetry activation,thereby accelerating the electrochemical reconstruction.The reconstructed OER catalyst(Fe-doped nickel hydroxide/oxyhydroxide nanosheets supported on Ni foam,Fe-NiO_(x)(OH)y/NF)manifests a low overpotential of 217 mV at 10 mA cm^(-2)and 263 m V at 100 m A cm^(-2)in 1.0 M KOH.Noteworthy,the Fe-NiO_(x)(OH)_(y)/NF also demonstrates high stability in 30 wt.%KOH.This strategy of regulating the electrochemical reconstruction process sheds light on the construction of stable and efficient OER catalysts for industrial water electrolysis.
基金supported partially by project of the National Natural Science Foundation of China(Nos.52102203 and 51972110)Beijing Science and Technology Project(No.Z211100004621010)+4 种基金Beijing Natural Science Foundation(No.2222076)State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS202114)Huaneng Group Headquarters Science and Technology Project(No.HNKJ20-H88)2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education,the Fundamental Research Funds for the Central Universities(No.2024MS082)the NCEPU “Double First- Class” Program.
文摘Topochemical transformation has emerged as a promising method for fabricating two-dimensional (2D) materials with precise control over their composition and morphology. However, the large-scale synthesis of ultrathin 2D materials with controllable thickness remains a tremendous challenge. Herein, we adopt an efficient topochemical synthesis strategy, employing a confined reaction space to fabricate ultrathin 2D Sn_(4)P_(3) nanosheets in large-scale. By carefully adjusting the rolling number during the processing of Sn/Al foils, we have successfully fabricated Sn_(4)P_(3) nanosheets with varied layer thicknesses, achieving a remarkable minimum thickness of two layers (~ 2.2 nm). Remarkably, the bilayer Sn_(4)P_(3) nanosheets display an exceptional initial capacity of 1088 mAh·g^(−1), nearing the theoretical value of 1230 mAh·g^(−1). Furthermore, we reveal their high-rate property as well as outstanding cyclic stability, maintaining capacity without fading more than 3000 cycles. By precisely controlling the layer thickness and ensuring nanoscale uniformity, we enhance the lithium cycling performance of Sn_(4)P_(3), marking a significant advancement in developing high-performance energy storage systems.
基金supported by the National Key Research and Development Program of China(2020YFA0715000 and 2016YFA0202603)the National Natural Science Foundation of China(51832004,51521001,and 22109029)。
文摘Aqueous zinc-ion batteries(AZIBs)are promising for large-scale energy storage,but their development is plagued by inadequate cycle life.Here,for the first time,we reveal an unusual phenomenon of cathodic underpotential deposition(UPD)of Zn,which is highly irreversible and considered the origin of the inferior cycling stability of AZIBs.Combining experimental and theoretical simulation approaches,we propose that the UPD process agrees with a two-dimensional nucleation and growth model,following a thermodynamically feasible mechanism.Furthermore,the universality of Zn UPD is identified in systems,including VO_(2)//Zn,TiO_(2)//Zn,and SnO_(2)//Zn.In practice,we propose and successfully implement removing cathodic Zn UPD and substantially mitigate the degradation of the battery by controlling the end-ofdischarge voltage.This work provides new insights into AZIBs degradation and brings the cathodic UPD behavior of rechargeable batteries into the limelight.
基金National Natural Science Foundation of China,Grant/Award Numbers:22075223,22179104State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology),Grant/Award Number:2021-ZD-4。
文摘Designing synergistic heterogeneous catalytic interfaces is the key to developing highly compatible pH-universal electrocatalysts for complex chemical environments.Our theoretical calculation results demonstrate that the Ru-Ru2P heterointerface can not only promote the redistribution of charges,but also reduce the d-band center,and then enhances the adsorption capacity of the key intermediate.However,in situ and facile synthesis of Ru-Ru2P heterostructures is severely limited by thermodynamic obstacles.Herein,we propose a molten salt-assisted catalytic synthesis scheme,and successfully build a series of homologous metallic Ru-Ru2P heterostructure catalysts with different molar ratios of Ru to P under atmospheric pressure and low-temperature(400C).The resultant Ru-Ru2P with rich heterostructures show the Pt-like HER performance in different pH media.Particularly,it is prominent under alkaline conditions(18 mV@10 mA cm^(2)),which outperforms the Pt catalyst(37 mV@10 mA cm^(2)).Furthermore,Ru-Ru2P heterostructures also show certain potential in the electrolysis of seawater to produce hydrogen.This work represents a significant supplement of high-efficiency pH-universal HER catalysts,and provides a new light on interface engineering in energy technology fields and beyond.
基金supported by the Key Research and Development Program of Hubei Province(2021BAA176)Hainan Provincial Natural Science Foundation of China(522CXTD516)。
文摘单质硅是一种有潜力的高容量锂离子电池负极材料.然而,受限于充放电过程中巨大的体积膨胀,其循环性能并不理想.在这个工作中,我们设计了一种独特的三组分复合负极材料(Si/Cr_(2)O_(3)/C),其中Si纳米颗粒被限域在碳包覆的氧化铬多层空心球(MSHSs)中.得益于Cr_(2)O_(3)/C基体的体积变化缓冲能力与优异的结构稳定性,将Si纳米颗粒封装在MSHSs中可以有效地提高其电化学性能.合理的结构设计赋予了Si/Cr_(2)O_(3)/C三组分复合材料高的可逆容量(在100 mA g^(-1)的电流密度下,比容量为1351 mA h g^(-1))和稳定的循环性能(在500 mA g^(-1)的电流密度下,循环300次后比容量保持在716 mA h g^(-1)).这一工作提出了一种多壳层空心结构设计的新思路,以解决硅基负极材料循环性差的瓶颈.
基金This study was supported by the National Natural Science Foundation of China(51832004,U1804253,and 51972259)Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-003).
文摘Rechargeable magnesium batteries are identified as a promising next-generation energy storage system,but their development is hindered by the anode−electrolyte−cathode incompatibilities and passivation of magnesium metal anode.To avoid or alleviate these problems,the exploitation of alternative anode materials is a promising choice.Herein,we present titanium pyrophosphate(TiP_(2)O_(7))as anode materials for magnesium-ion batteries(MIBs)and investigate the effect of the crystal phase on its magnesium storage performance.Compared with the me-tastable layered TiP_(2)O_(7),the thermodynamically stable cubic TiP_(2)O_(7) displays a better rate capability of 72 mAh g^(−1) at 5000 mA g^(−1).Moreover,cubic TiP_(2)O_(7) exhibits excellent cycling stability with the capacity of 60 mAh g^(−1) after 5000 cycles at 1000 mA g^(−1),which are better than pre-viously reported Ti-based anode materials for MIBs.In situ X-ray diffraction technology confirms the single-phase magnesiumion inter-calation/deintercalation reaction mechanism of cubic TiP_(2)O_(7) with a low volume change of 3.2%.In addition,the density functional theory calcu-lation results demonstrate that three-dimensional magnesiumion diffu-sion can be allowed in cubic TiP_(2)O_(7) with a low migration energy barrier of 0.62 eV.Our work demonstrates the promise of TiP_(2)O_(7) as high-rate and long-life anode materials for MIBs and may pave the way for further development of MIBs.
基金supported by the National Natural Science Foundation of China(21825103,52001165)Natural Science Foundation of Hubei Province(2019CFA002)+2 种基金Natural Science Foundation of Jiangsu Province(BK20200475)the Fundamental Research Funds for the Central Universities(2019kfy XMBZ018,30921011215)supports from Analytical and Testing Center in Huazhong University of Science and Technology as well as Nanostructure Research Center(NRC)supported by the Fundamental Research Funds for the Central Universities(WUT:2019III012GX,2020III002GX)。
文摘Strain engineering is a promising method for tuning the electronic properties of two-dimensional(2 D)materials,which are capable of sustaining enormous strain thanks to their atomic thinness.However,applying a large and homogeneous strain on these 2D materials,including the typical semiconductor MoS_(2),remains cumbersome.Here we report a facile strategy for the fabrication of highly strained MoS_(2) via chalcogenide substitution reaction(CSR)of MoTe_(2) with lattice inheritance.The MoS_(2)resulting from the sulfurized MoTe_(2) sustains ultra large in-plane strain(approaching its strength limit~10%)with great homogeneity.Furthermore,the strain can be deterministically and continuously tuned to~1.5%by simply varying the processing temperature.Thanks to the fine control of our CSR process,we demonstrate a heterostructure of strained MoS_(2)/MoTe_(2)with abrupt interface.Finally,we verify that such a large strain potentially allows the modulation of MoS_(2) bandgap over an ultra-broad range(~1 e V).Our controllable CSR strategy paves the way for the fabrication of highly strained 2D materials for applications in devices.
基金This work was supported by the National Natural Science Foundation of China(52072282)The authors also wish to acknowledge support from the National Key Research and Development Program of China(2019YFA0704900)the Fundamental Research Fund for the Central Universities(WUT:2021III016GX).
文摘Sodium ion batteries(SIBs)and potassium ion batteries(PIBs)have caught numerous attention due to the low cost and abundant availability of sodium and potassium.However,their power density,cycling stability and safety need further improvement for practical applications.Investigations on the reaction mechanisms and structural degradation when cycling are of great importance.In situ transmission electron microscopy(TEM)is one of the most significant techniques to understand and monitor electrochemical processes at an atomic scale with real-time imaging.In this review,the current progress in unraveling reaction mechanisms of electrode materials for SIBs and PIBs via in situ TEM is summarized.First,the importance of in situ TEM is highlighted.Then,based on the three types of electrochemical reaction,i.e.,intercalation reac-tion,conversion reaction and alloying reaction,the structural evolution and reaction kinetics at atomic resolution,and their relation to the electrochemical performance of electrode materials are reviewed and described in detail.Fi-nally,future directions of in situ TEM for SIBs and PIBs are proposed.Therefore,the in‐depth understanding revealed by in situ TEM will give an instructive guide in rational design of electrode materials for high performance electrode materials of SIBs and PIBs.
基金supported by the National Natural Science Foundation of China(No.51904216).
文摘Carbon-based electrodes of potassium-ion batteries are of great research interest ascribed to their low cost and environmentally friendly distinctions.However,traditional carbon materials usually exhibit weak mechanical properties and incomplete crosslinking,resulting in poor stability and electrochemical performance.Herein,we report a new strategy for modifying reduced graphene oxide into a uniform few-layer structure through a sol–gel method combined with acid etching treatment.The obtained chemical cross-linking and mechanically reinforced carbon network constructed by graphene(CNCG)demonstrates excellent electrochemical and mechanical properties.Adopted as a free-standing anode(~7 mg·cm^(−2))for potassium ion battery,the asachieved CNCG delivers a high reversible specific capacity of 317.7 mAh·g^(−1) at a current density of 50 mA·g^(−1) and admirable cycle stability(208.4 mAh·g^(−1) at 50 mA·g^(−1) after 500 cycles).The highly reversible structural stability and fully cross-linked properties during potassiation are revealed by ex-situ characterization.This work provides new ideas for the synthesis of new carbon materials and the development of high-performance electrodes.
基金National Natural Science Foundation of China,Grant/Award Number:81571573。
文摘Background:Interleukin-21(IL-21)has a regulatory effect on various immune cells.Its effect on macrophage function remains unclear.Aims:This study aimed to investigate the effect of IL-21 on the macrophagesmediated inflammatory response and explore its mechanism.Materials&Methods:Phorbol myristate acetate was used to induce THP-1-derived macrophages.Then,cells were stimulated with IL-21 and/or lipopolysaccharide(LPS).To determine the effect of IL-21 on the production of inflammatory factors in THP-1-derived macrophages,the messenger RNA(mRNA)and protein levels of IL-6,tumor necrosis factor-α(TNF-α),IL-8,and IL-10 were detected by real-time polymerase chain reaction(RT-PCR)and enzyme-linked immunosorbent assay(ELISA),respectively.Meanwhile,to explore the effect of IL-21 on macrophage polarization,macrophage phenotype,gene expression,and cytokine secretion mediated by THP-1-derived macrophage were detected by flow cytometry,RT-PCR,and ELISA.Results:First,we found that the IL-21 receptor was expressed in THP-1-derived macrophages.IL-21 enhanced LPS-mediated TNF-α,IL-6,and IL-10 production in THP-1-derived macrophages.During the polarization of THP-1-derived macrophages to M1-like macrophages,IL-21 induced the expression of macrophage surface markers CD86 and CD80,and related genes,such as TNF-α,IL-6,IL-1β,and DC-SIGN mRNA,inhibited Dectin-1 mRNA expression and promoted the secretion of TNF-α.During the polarization of THP-1-derived macrophages to M2-like macrophages,IL-21 enhanced the expression of macrophage surface markers CD86 and CD163,and related genes,such as TNF-α,IL-1β,IL-10,Dectin-1,and DC-SIGN mRNA,and promoted the secretion of IL-10.Conclusion:IL-21 promotes LPS-mediated production of inflammatory cytokines by THP-1-derived macrophages;IL-21 plays a two-way regulatory role in THP-1-derived macrophage polarization.