This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPo...This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3).FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs)with different sets of future emission,concentration,and land-use scenarios.All Tier 1 and 2 experiments were carried out and were initialized using historical runs.A branch run method was used for the ensemble simulations.Model outputs were three-hourly,six-hourly,daily,and/or monthly mean values for the primary variables of the four component models.An evaluation and analysis of the simulations is also presented.The present results are expected to aid research into future climate change and socio-economic development.展开更多
The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency ban...The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.展开更多
基金This study was supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0603903,2017YFA0603901,and 2017YFA0603902)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB42010404)the National Basic Research(973)Program of China(Grant Nos.2015CB954102).
文摘This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP)simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3).FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs)with different sets of future emission,concentration,and land-use scenarios.All Tier 1 and 2 experiments were carried out and were initialized using historical runs.A branch run method was used for the ensemble simulations.Model outputs were three-hourly,six-hourly,daily,and/or monthly mean values for the primary variables of the four component models.An evaluation and analysis of the simulations is also presented.The present results are expected to aid research into future climate change and socio-economic development.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1507403)。
文摘The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.