The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by ...The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.展开更多
The layered metal oxides are reviewed as the hopeful cathode materials for high-performance sodium-ion batteries(SIBs)due to their large theoretical capacity,favorable two-dimensional(2D)ion diffusion channel,and simp...The layered metal oxides are reviewed as the hopeful cathode materials for high-performance sodium-ion batteries(SIBs)due to their large theoretical capacity,favorable two-dimensional(2D)ion diffusion channel,and simple manipuility.However,their cycling stability,rate capability,and thermal stability are still significantly concerned and highlighted before further practical application.The chemical,mechanical and electrochemical stability of the cathode–electrolyte interfaces upon cycling is of great significance.Herein,the unique structural and electrochemical properties of the layered oxide cathode materials for SIB are reviewed.The mechanism of bulk/surface degradation induced by oxygen evolution,phase transition,microcrack,and electrolyte decomposition is thoroughly understood.Furthermore,the interfacial engineering to construct stable interface through various effective methods is fully discussed.The future outlook and challenges for interfacial engineering in this filed are also summarized.This review should shed light on the rational design and construct of robust interface for applications of superior layered oxide cathodes in SIB and may suggest future research directions.展开更多
Objective:To investigate the role and the molecular mechanisms of apoptotic signaling in ferroptosis to regulate tumor radiosensitivity.Methods:Reactive oxygen species(ROS)and lipid peroxide levels were detected in Mo...Objective:To investigate the role and the molecular mechanisms of apoptotic signaling in ferroptosis to regulate tumor radiosensitivity.Methods:Reactive oxygen species(ROS)and lipid peroxide levels were detected in Mouse embryonic fibroblasts(MEFs)with Bcl-xL or Mcl-1 deficiency induced by erastin.Colony formation,ROS,lipid peroxidation and the transcription/translation levels of PTGS2 were measured in Bcl-xL knockdown tumor cells induced by 5 Gyγ-rays or co-treated with ferrostatin-1(Ferr-1).The protein levels of LPCAT3,ACSL4 and PEBP1 in Bcl-xL knockout MEF cells were evaluated in Bcl-xL knockout MEF cells post-radiation.Moreover,the interaction of heat shock protein 90(HSP90)with Bcl-xL,GPX4,or LAMP2A was detected by protein mass spectrometry and immunoprecipitation assays.Results:Manipulating Bcl-xL levels facilitated radiation-induced ferroptosis by augmenting the enzymatic oxidation of polyunsaturated fatty acids(PUFAs)and enhancing chaperone-mediated autophagy(CMA)of glutathione peroxidase 4(GPX4)(MEF cell line:t=4.540,P<0.01;A549 cell line:t=56.16,P<0.0001;t=4.885,P<0.01;HCT116 cell line:t=14.75,P<0.01;t=7.363,P<0.05).Downregulating Bcl-xL expression promoted the activity of acyl-CoA synthetase long-chain family member 4(ACSL4),thus increasing the enzymatic oxidation of PUFAs(t=4.258,P<0.01).Moreover,depletion of Bcl-xL expedited the CMA process targeting GPX4 by facilitating the association of GPX4 with heat shock protein 90(HSP90)and LAMP2A following radiation exposure.Subsequent degradation of GPX4 led to the accumulation of lipid peroxides,ultimately triggering ferroptosis.Conclusions:Our study provides initial insights into the regulatory role of Bcl-xL in ferroptosis and underscores the potential of targeting Bcl-xL as a promising therapeutic strategy for cancer by modulating both apoptotic and ferroptotic pathways.展开更多
In recent decade, Au nanoclusters of atomic precision (AunLm, where L= organic ligand: thiolate andphosphine) have been shown as a new promising nanogold catalyst. The well-defined AunLm catalystspossess unique ele...In recent decade, Au nanoclusters of atomic precision (AunLm, where L= organic ligand: thiolate andphosphine) have been shown as a new promising nanogold catalyst. The well-defined AunLm catalystspossess unique electronic properties and frameworks, providing an excellent opportunity to correlate theintrinsic catalytic behavior with the cluster's framework as well as to study the catalytic mechanismsover gold nanoclusters. In this review, we only demonstrate the important roles of the gold nanoclustersin the oxygen activation (e.g., 302 to 102) and their selective oxidations in the presence of oxygen (e.g., COto C02, sulfides to sulfoxides, alcohol to aldehyde, styrene to styrene epoxide, amines to imines, andglucose to gluconic acid). The size-specificity (Au25 (1.3 nm), Au38 (].5 nm), Au144 (1.9 nm), etc.), ligandengineering (e.g., aromatic vs aliphatic), and doping effects (e.g., copper, silver, palladium, and platinum)are discussed in details. Finally, the proposed reactions' mechanism and the relationships of clusters'structure and activity at the atomic level also are presented.展开更多
基金supported by the National Natural Science Foundation of China (52173273)Fundamental Research Funds for the Central Universities (2022CX11013)+2 种基金Shanxi Province Science Foundation for Youths (No.202203021212391)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No.2022L253)Institute Foundation Project of China Academy of Railway Sciences Corporation Limited Metals and Chemistry Research Institute (No.2023SJ02)。
文摘The Mn-based oxide cathode with enriched crystal phase structure and component diversity can provide the excellent chemistry structure for Na-ion batteries.Nevertheless,the broad application prospect is obstructed by the sluggish Na^(+)kinetics and the phase transitions upon cycling.Herein,we establish the thermodynamically stable phase diagram of various Mn-based oxide composites precisely controlled by sodium content tailoring strategy coupling with co-doping and solid-state reaction.The chemical environment of the P2/P'3 and P2/P3 biphasic composites indicate that the charge compensation mechanism stems from the cooperative contribution of anions and cations.Benefiting from the no phase transition to scavenge the structure strain,P2/P'3 electrode can deliver long cycling stability(capacity retention of 73.8%after 1000 cycles at 10 C)and outstanding rate properties(the discharge capacity of 84.08 mA h g^(-1)at 20 C)than P2/P3 electrode.Furthermore,the DFT calculation demonstrates that the introducing novel P'3 phase can significantly regulate the Na^(+)reaction dynamics and modify the local electron configuration of Mn.The effective phase engineering can provide a reference for designing other high-performance electrode materials for Na-ion batteries.
基金supported by the National Natural Science Foundation of China(No.52173273)Fundamental Research Funds for the Central Universities(No.2022CX11013)+2 种基金Shanxi Province Science Foundation for Youths(No.202203021212391)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2022L253)Institute Foundation Project of China Academy of Railway Sciences Corporation Limited Metals and Chemistry Research Institute(No.2023SJ02).
文摘The layered metal oxides are reviewed as the hopeful cathode materials for high-performance sodium-ion batteries(SIBs)due to their large theoretical capacity,favorable two-dimensional(2D)ion diffusion channel,and simple manipuility.However,their cycling stability,rate capability,and thermal stability are still significantly concerned and highlighted before further practical application.The chemical,mechanical and electrochemical stability of the cathode–electrolyte interfaces upon cycling is of great significance.Herein,the unique structural and electrochemical properties of the layered oxide cathode materials for SIB are reviewed.The mechanism of bulk/surface degradation induced by oxygen evolution,phase transition,microcrack,and electrolyte decomposition is thoroughly understood.Furthermore,the interfacial engineering to construct stable interface through various effective methods is fully discussed.The future outlook and challenges for interfacial engineering in this filed are also summarized.This review should shed light on the rational design and construct of robust interface for applications of superior layered oxide cathodes in SIB and may suggest future research directions.
基金the National Science Fund for Excellent Young Scholars(grant number 12122510)the National Natural Science Foundation of China(grant number 32171240)+1 种基金Anhui Provincial Natural Science Foundation(grant numbers 2108085MH279)the HFIPS Director’s Fund(grant numbers BJPY2021B07 and BJPY2023A010).
文摘Objective:To investigate the role and the molecular mechanisms of apoptotic signaling in ferroptosis to regulate tumor radiosensitivity.Methods:Reactive oxygen species(ROS)and lipid peroxide levels were detected in Mouse embryonic fibroblasts(MEFs)with Bcl-xL or Mcl-1 deficiency induced by erastin.Colony formation,ROS,lipid peroxidation and the transcription/translation levels of PTGS2 were measured in Bcl-xL knockdown tumor cells induced by 5 Gyγ-rays or co-treated with ferrostatin-1(Ferr-1).The protein levels of LPCAT3,ACSL4 and PEBP1 in Bcl-xL knockout MEF cells were evaluated in Bcl-xL knockout MEF cells post-radiation.Moreover,the interaction of heat shock protein 90(HSP90)with Bcl-xL,GPX4,or LAMP2A was detected by protein mass spectrometry and immunoprecipitation assays.Results:Manipulating Bcl-xL levels facilitated radiation-induced ferroptosis by augmenting the enzymatic oxidation of polyunsaturated fatty acids(PUFAs)and enhancing chaperone-mediated autophagy(CMA)of glutathione peroxidase 4(GPX4)(MEF cell line:t=4.540,P<0.01;A549 cell line:t=56.16,P<0.0001;t=4.885,P<0.01;HCT116 cell line:t=14.75,P<0.01;t=7.363,P<0.05).Downregulating Bcl-xL expression promoted the activity of acyl-CoA synthetase long-chain family member 4(ACSL4),thus increasing the enzymatic oxidation of PUFAs(t=4.258,P<0.01).Moreover,depletion of Bcl-xL expedited the CMA process targeting GPX4 by facilitating the association of GPX4 with heat shock protein 90(HSP90)and LAMP2A following radiation exposure.Subsequent degradation of GPX4 led to the accumulation of lipid peroxides,ultimately triggering ferroptosis.Conclusions:Our study provides initial insights into the regulatory role of Bcl-xL in ferroptosis and underscores the potential of targeting Bcl-xL as a promising therapeutic strategy for cancer by modulating both apoptotic and ferroptotic pathways.
基金financial support by the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi(OIT)Shanxi Province Hundred Talent Project
文摘In recent decade, Au nanoclusters of atomic precision (AunLm, where L= organic ligand: thiolate andphosphine) have been shown as a new promising nanogold catalyst. The well-defined AunLm catalystspossess unique electronic properties and frameworks, providing an excellent opportunity to correlate theintrinsic catalytic behavior with the cluster's framework as well as to study the catalytic mechanismsover gold nanoclusters. In this review, we only demonstrate the important roles of the gold nanoclustersin the oxygen activation (e.g., 302 to 102) and their selective oxidations in the presence of oxygen (e.g., COto C02, sulfides to sulfoxides, alcohol to aldehyde, styrene to styrene epoxide, amines to imines, andglucose to gluconic acid). The size-specificity (Au25 (1.3 nm), Au38 (].5 nm), Au144 (1.9 nm), etc.), ligandengineering (e.g., aromatic vs aliphatic), and doping effects (e.g., copper, silver, palladium, and platinum)are discussed in details. Finally, the proposed reactions' mechanism and the relationships of clusters'structure and activity at the atomic level also are presented.