期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Mango Pest Detection Using Entropy-ELM with Whale Optimization Algorithm 被引量:2
1
作者 U.Muthaiah s.chitra 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3447-3458,共12页
Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminar... Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems. 展开更多
关键词 Whale optimization algorithm Entropy-ELM feature selection pests detection support vector machine mango trees classification
下载PDF
Energy Efficient Networks Using Ant Colony Optimization with Game Theory Clustering
2
作者 Harish Gunigari s.chitra 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3557-3571,共15页
Real-time applications based on Wireless Sensor Network(WSN)tech-nologies quickly lead to the growth of an intelligent environment.Sensor nodes play an essential role in distributing information from networking and it... Real-time applications based on Wireless Sensor Network(WSN)tech-nologies quickly lead to the growth of an intelligent environment.Sensor nodes play an essential role in distributing information from networking and its transfer to the sinks.The ability of dynamical technologies and related techniques to be aided by data collection and analysis across the Internet of Things(IoT)network is widely recognized.Sensor nodes are low-power devices with low power devices,storage,and quantitative processing capabilities.The existing system uses the Artificial Immune System-Particle Swarm Optimization method to mini-mize the energy and improve the network’s lifespan.In the proposed system,a hybrid Energy Efficient and Reliable Ant Colony Optimization(ACO)based on the Routing protocol(E-RARP)and game theory-based energy-efficient clus-tering algorithm(GEC)were used.E-RARP is a new Energy Efficient,and Reli-able ACO-based Routing Protocol for Wireless Sensor Networks.The suggested protocol provides communications dependability and high-quality channels of communication to improve energy.For wireless sensor networks,a game theo-ry-based energy-efficient clustering technique(GEC)is used,in which each sen-sor node is treated as a player on the team.The sensor node can choose beneficial methods for itself,determined by the length of idle playback time in the active phase,and then decide whether or not to rest.The proposed E-RARP-GEC improves the network’s lifetime and data transmission;it also takes a minimum amount of energy compared with the existing algorithms. 展开更多
关键词 Ant colony optimization game theory wireless sensor network network lifetime routing protocol data transmission energy efficiency
下载PDF
Optimal Data Placement and Replication Approach for SIoT with Edge
3
作者 B.Prabhu Shankar s.chitra 《Computer Systems Science & Engineering》 SCIE EI 2022年第5期661-676,共16页
Social networks(SNs)are sources with extreme number of users around the world who are all sharing data like images,audio,and video to their friends using IoT devices.This concept is the so-called Social Internet of Th... Social networks(SNs)are sources with extreme number of users around the world who are all sharing data like images,audio,and video to their friends using IoT devices.This concept is the so-called Social Internet of Things(SIot).The evolving nature of edge-cloud computing has enabled storage of a large volume of data from various sources,and this task demands an efficient storage procedure.For this kind of large volume of data storage,the usage of data replication using edge with geo-distributed cloud service area is suited to fulfill the user’s expectations with low latency.The major issue is the way to store the data and replicate these large data items optimally and allocate the request from the data center efficiently.For efficient storage of these data,we use edge server,which is part of the cloud server,in this study.Thus,the data are distributed and stored with quick access,which will reduce the latency with response.The proposed data placement approach learns with machine learning(ML)algorithm called radial basis kernel function assisted with support vector machine(RBF-SVM)to classify the data center for storing the user and friend’s data from the SIoT devices.These learning algorithms will be used to predict the workload of the data stored in the data center as either edge or cloud depending on the existing time slots.The data placement with dynamic nature is also optimized using the proposed dynamic graph partitioning(GP)method to meet the individual user’s demand of low latency with minimum costs.This way will keep the SIoT data placement efficient and effective over time.Accordingly,this proposed data placement and replication approach introduces three kinds of innovations compared with the existing data placement approach.(i)Rather than storing the user data in a single cloud,this study uses the edge server closest to the SIoT devices for faster access with reduced response time.(ii)The classification algorithm called RBF-SVM is used to find storage for user for reducing data replication.(iii)Dynamic GP is introduced for data placement with reduced latency and minimum cost to fulfil the dynamic nature of the SN.The simulation result of this approach obtains reduced latency of 130 ms and minimum cost compared with those of the existing data placement approaches.Therefore,our proposed data placement with ML-based learning on edge provides promising results in terms of efficiency,effectiveness,and performance with reduced latency and minimum cost. 展开更多
关键词 Data placement data replication social network social internet of things edge computing cloud computing graph partitioning support vector machine machine learning radial basis function LATENCY storage cost
下载PDF
Hybrid Cloud Security by Revocable KUNodes-Storage with Identity-Based Encryption
4
作者 S.Saravanakumar s.chitra 《Computer Systems Science & Engineering》 SCIE EI 2022年第12期985-996,共12页
Cloud storage is a service involving cloud service providers providingstorage space to customers. Cloud storage services have numerous advantages,including convenience, high computation, and capacity, thereby attracti... Cloud storage is a service involving cloud service providers providingstorage space to customers. Cloud storage services have numerous advantages,including convenience, high computation, and capacity, thereby attracting usersto outsource data in the cloud. However, users outsource data directly via cloudstage services that are unsafe when outsourcing data is sensitive for users. Therefore, cipher text-policy attribute-based encryption is a promising cryptographicsolution in a cloud environment, and can be drawn up for access control by dataowners (DO) to define access policy. Unfortunately, an outsourced architectureapplied with attribute-based encryption introduces numerous challenges, including revocation. This issue is a threat to the data security of DO. Furthermore,highly secure and flexible cipher text-based attribute access control with role hierarchy user grouping in cloud storage is implemented by extending the KUNodes(revocation) storage identity-based encryption. Result is evaluated using Cloudsim, and our algorithm outperforms in terms of computational cost by consuming32 MB for 150-MB files. 展开更多
关键词 Cloud computing storage identification based revocation attribute based access control encryption DECRYPTION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部