期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Explainable Conformer Network for Detection of COVID-19 Pneumonia from Chest CT Scan: From Concepts toward Clinical Explainability
1
作者 Mohamed Abdel-Basset Hossam Hawash +2 位作者 Mohamed Abouhawwash s.s.askar Alshaimaa A.Tantawy 《Computers, Materials & Continua》 SCIE EI 2024年第1期1171-1187,共17页
The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for preci... The early implementation of treatment therapies necessitates the swift and precise identification of COVID-19 pneumonia by the analysis of chest CT scans.This study aims to investigate the indispensable need for precise and interpretable diagnostic tools for improving clinical decision-making for COVID-19 diagnosis.This paper proposes a novel deep learning approach,called Conformer Network,for explainable discrimination of viral pneumonia depending on the lung Region of Infections(ROI)within a single modality radiographic CT scan.Firstly,an efficient U-shaped transformer network is integrated for lung image segmentation.Then,a robust transfer learning technique is introduced to design a robust feature extractor based on pre-trained lightweight Big Transfer(BiT-L)and finetuned on medical data to effectively learn the patterns of infection in the input image.Secondly,this work presents a visual explanation method to guarantee clinical explainability for decisions made by Conformer Network.Experimental evaluation of real-world CT data demonstrated that the diagnostic accuracy of ourmodel outperforms cutting-edge studies with statistical significance.The Conformer Network achieves 97.40% of detection accuracy under cross-validation settings.Our model not only achieves high sensitivity and specificity but also affords visualizations of salient features contributing to each classification decision,enhancing the overall transparency and trustworthiness of our model.The findings provide obvious implications for the ability of our model to empower clinical staff by generating transparent intuitions about the features driving diagnostic decisions. 展开更多
关键词 Deep learning COVID-19 multi-modal medical image fusion diagnostic image fusion
下载PDF
Hybrid Smart Contracts for Securing IoMT Data
2
作者 D.Palanikkumar Adel Fahad Alrasheedi +2 位作者 P.Parthasarathi s.s.askar Mohamed Abouhawwash 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期457-469,共13页
Data management becomes essential component of patient healthcare.Internet of Medical Things(IoMT)performs a wireless communication between E-medical applications and human being.Instead of consulting a doctor in the ... Data management becomes essential component of patient healthcare.Internet of Medical Things(IoMT)performs a wireless communication between E-medical applications and human being.Instead of consulting a doctor in the hospital,patients get health related information remotely from the physician.The main issues in the E-Medical application are lack of safety,security and priv-acy preservation of patient’s health care data.To overcome these issues,this work proposes block chain based IoMT Processed with Hybrid consensus protocol for secured storage.Patients health data is collected from physician,smart devices etc.The main goal is to store this highly valuable health related data in a secure,safety,easy access and less cost-effective manner.In this research we combine two smart contracts such as Practical Byzantine Fault Tolerance with proof of work(PBFT-PoW).The implementation is done using cloud technology setup with smart contracts(PBFT-PoW).The accuracy rate of PBFT is 90.15%,for PoW is 92.75%and our proposed work PBFT-PoW is 99.88%. 展开更多
关键词 PoW byzantine fault tolerance IoMT cloud computing health care data
下载PDF
Hybrid Convolutional Neural Network for Plant Diseases Prediction
3
作者 S.Poornima N.Sripriya +2 位作者 Adel Fahad Alrasheedi s.s.askar Mohamed Abouhawwash 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2393-2409,共17页
Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant f... Plant diseases prediction is the essential technique to prevent the yield loss and gain high production of agricultural products.The monitoring of plant health continuously and detecting the diseases is a significant for sustainable agri-culture.Manual system to monitor the diseases in plant is time consuming and report a lot of errors.There is high demand for technology to detect the plant dis-eases automatically.Recently image processing approach and deep learning approach are highly invited in detection of plant diseases.The diseases like late blight,bacterial spots,spots on Septoria leaf and yellow leaf curved are widely found in plants.These are the main reasons to affects the plants life and yield.To identify the diseases earliest,our research presents the hybrid method by com-bining the region based convolutional neural network(RCNN)and region based fully convolutional networks(RFCN)for classifying the diseases.First the leaf images of plants are collected and preprocessed to remove noisy data in image.Further data normalization,augmentation and removal of background noises are done.The images are divided as testing and training,training images are fed as input to deep learning architecture.First,we identify the region of interest(RoI)by using selective search.In every region,feature of convolutional neural network(CNN)is extracted independently for further classification.The plants such as tomato,potato and bell pepper are taken for this experiment.The plant input image is analyzed and classify as healthy plant or unhealthy plant.If the image is detected as unhealthy,then type of diseases the plant is affected will be displayed.Our proposed technique achieves 98.5%of accuracy in predicting the plant diseases. 展开更多
关键词 Disease detection people detection image classification deep learning region based convolutional neural network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部