A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized d...A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized design was established with three replications and five treatments, i.e., NO-3-N/NH4+-N of 100/0, 75/25, 50/50, 25/75 and 0/100. Results showed that 25% replacement of NO3--N by NH4+-N significantly (P = 0.05) improved fresh and dry weight, revealing that a proper percentage of NH4+-N was important for tomato nitrogen nutrition. This could increase the plant growth even though tomato was a crop that preferred nitrate nutrition. Also an increase in the proportion of NH4+-N in the nutrient solution led to a significant decrease (P = 0.05) in malate, citrate and fumarate. However, the 25% NH4+-N plus 75% NO3--N treatment had no significant effect (P = 0.05) on the 2-ketoglutarate, succinate or oxalic acid content, showing that only some organic acids in tomato plants were affected. Only pyruvate increased significantly (P = 0.05), and it only increased for 25% and 50% replacement of NO3--N by NH4+-N. Metabolism of these organic acids, especially malate, citrate and fumarate, should be further studied at the molecular level in vegetables applied with different nitrogen forms.展开更多
Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a n...Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a non-destructive and non-interruptive method to measure NO 3 gradients and electric potential differences across both the plasma membrane and tonoplast. Thus, a double-barrelled microelectrode backfilled with a membrane sensor for NO 3 embedded in poly vinyl chloride (PVC) can record the NO 3 activity in cytoplasm and vacuole of a cell. This paper presented how to make this kind of microelectrode and how to do the intracellular measurements on intact plants. Our result showed that nitrate activity was about 2.7 mmol L 1 in cytoplasm while 70 mmol L 1 in vacuole, which implicated that vacuole was a pool of nitrate in plants.展开更多
Although available iron is usually abundant for the growth of rice cultivated in waterlogged condition, the rice crop may suffer from its deficiency when cultivated in aerobic soil since the soil properties are totall...Although available iron is usually abundant for the growth of rice cultivated in waterlogged condition, the rice crop may suffer from its deficiency when cultivated in aerobic soil since the soil properties are totally different from waterlogged. Solubility of iron is very low in soils with high Eh and/or high pH. A field experiment with five different depth (10, 20, 30, 40 and 50 cm) of groundwater, and a pot experiment with five treatments of ammonium nitrate ratio (100/0, 75/25, 50/50, 25/75 and 0/100) were conducted to study the characteristics of iron nutrition of rice in non full irrigation condition. Moreover, the contents of iron extracted by 1 mol L 1 HCl of rice plant samples of 8 cultivars from both aerobic and waterlogged cultivation were analyzed to study the effect of water regimes on iron content of rice plants. The results were as follows: (1) The average content of available Fe (2.70 mg kg 1 ) of 5 layers of the soil treated with 10 cm depth of groundwater was significantly higher than that (0.83 mg kg 1 ) with 50 cm depth of groundwater, and the iron concentration of rice plant of the former was much higher than that of the later. (2) Iron deficiency of rice became much severe when high ratio of nitrate (more than 75 percent) in nitrogen fertilizer applied at different intervals in aerobic cultivation. (3) The iron concentrations of 3 cultivars, Wuyujing3 (99 mg kg 1 ), Yangdao4 (87 mg kg 1 ) and 9520 (95 mg kg 1 ), of rice plants cultivated in aerobic condition were significantly less than those(195, 197 and 175 mg kg 1 ) respectively in waterlogged condition at tillering stage. And even much significant differences existed in the iron concentrations of different cultivars growing in the aerobic and waterlogged condition at maturity.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 30270790) and National Post-doctoral Foundation of China (No. 2003033494).
文摘A hydroponic experiment was conducted to study the effect of partial replacement of NO-3-N by NH4+-N on the seedling growth and organic acid content of tomato (Lycopersicon esculentum Mill.). A completely randomized design was established with three replications and five treatments, i.e., NO-3-N/NH4+-N of 100/0, 75/25, 50/50, 25/75 and 0/100. Results showed that 25% replacement of NO3--N by NH4+-N significantly (P = 0.05) improved fresh and dry weight, revealing that a proper percentage of NH4+-N was important for tomato nitrogen nutrition. This could increase the plant growth even though tomato was a crop that preferred nitrate nutrition. Also an increase in the proportion of NH4+-N in the nutrient solution led to a significant decrease (P = 0.05) in malate, citrate and fumarate. However, the 25% NH4+-N plus 75% NO3--N treatment had no significant effect (P = 0.05) on the 2-ketoglutarate, succinate or oxalic acid content, showing that only some organic acids in tomato plants were affected. Only pyruvate increased significantly (P = 0.05), and it only increased for 25% and 50% replacement of NO3--N by NH4+-N. Metabolism of these organic acids, especially malate, citrate and fumarate, should be further studied at the molecular level in vegetables applied with different nitrogen forms.
基金supported by the National Natural Science Foundation of China(30270790).
文摘Remobilisation of nitrate in plants, especially in vacuole of plant, is mostly related to the qua- lity of agricultural products and the high nitrogen use efficiency in plants. Ion-selective microelectrodes offer a non-destructive and non-interruptive method to measure NO 3 gradients and electric potential differences across both the plasma membrane and tonoplast. Thus, a double-barrelled microelectrode backfilled with a membrane sensor for NO 3 embedded in poly vinyl chloride (PVC) can record the NO 3 activity in cytoplasm and vacuole of a cell. This paper presented how to make this kind of microelectrode and how to do the intracellular measurements on intact plants. Our result showed that nitrate activity was about 2.7 mmol L 1 in cytoplasm while 70 mmol L 1 in vacuole, which implicated that vacuole was a pool of nitrate in plants.
文摘Although available iron is usually abundant for the growth of rice cultivated in waterlogged condition, the rice crop may suffer from its deficiency when cultivated in aerobic soil since the soil properties are totally different from waterlogged. Solubility of iron is very low in soils with high Eh and/or high pH. A field experiment with five different depth (10, 20, 30, 40 and 50 cm) of groundwater, and a pot experiment with five treatments of ammonium nitrate ratio (100/0, 75/25, 50/50, 25/75 and 0/100) were conducted to study the characteristics of iron nutrition of rice in non full irrigation condition. Moreover, the contents of iron extracted by 1 mol L 1 HCl of rice plant samples of 8 cultivars from both aerobic and waterlogged cultivation were analyzed to study the effect of water regimes on iron content of rice plants. The results were as follows: (1) The average content of available Fe (2.70 mg kg 1 ) of 5 layers of the soil treated with 10 cm depth of groundwater was significantly higher than that (0.83 mg kg 1 ) with 50 cm depth of groundwater, and the iron concentration of rice plant of the former was much higher than that of the later. (2) Iron deficiency of rice became much severe when high ratio of nitrate (more than 75 percent) in nitrogen fertilizer applied at different intervals in aerobic cultivation. (3) The iron concentrations of 3 cultivars, Wuyujing3 (99 mg kg 1 ), Yangdao4 (87 mg kg 1 ) and 9520 (95 mg kg 1 ), of rice plants cultivated in aerobic condition were significantly less than those(195, 197 and 175 mg kg 1 ) respectively in waterlogged condition at tillering stage. And even much significant differences existed in the iron concentrations of different cultivars growing in the aerobic and waterlogged condition at maturity.