Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne...Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.展开更多
This paper presents an analytical procedure for massive water-sealing barriers(MWSBs)that are made of partially overlapped jet-grouting columns used for deep excavations,in which two crucial factors of the permeabilit...This paper presents an analytical procedure for massive water-sealing barriers(MWSBs)that are made of partially overlapped jet-grouting columns used for deep excavations,in which two crucial factors of the permeability and strength of jet-grouted materials are considered.Subsequently,a calculation example is analyzed and discussed.Results show that“tension failure”mechanism is a major concern for the structural failure during a design of MWSBs.The maximum allowable seepage discharge is a crucial index for the design of MWSBs,which has a significant influence on determining the design parameters of MWSBs.Compared with the design procedure for MWSBs that is proposed in this paper,the design parameters of MWSBs determined by the stability equilibrium and seepage stability equilibrium approaches are conservative due to the fact that it fails to consider the permeability or strength of jet-grouted materials that makes a contribution to the structural safety.Based on the proposed design method,the ranges of both the thickness and depth of MWSBs for a case history of subway excavation in Fuzhou,China were determined.Finally,field pumping test results showed that the water-tightness performance of MWSBs performed at site was quite well.展开更多
When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary ...When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided.展开更多
基金Project(52178402)supported by the National Natural Science Foundation of ChinaProject(2021-Key-09)supported by the Science and Technology Research and Development Program Project of China Railway Group LimitedProject(2021zzts0216)supported by the Innovation-Driven Project of Central South University,China。
文摘Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly.
基金Projects(52090084, 51938008) supported by the National Natural Science Foundation of ChinaProject(2021T140474)supported by the China Postdoctoral Science Foundation。
文摘This paper presents an analytical procedure for massive water-sealing barriers(MWSBs)that are made of partially overlapped jet-grouting columns used for deep excavations,in which two crucial factors of the permeability and strength of jet-grouted materials are considered.Subsequently,a calculation example is analyzed and discussed.Results show that“tension failure”mechanism is a major concern for the structural failure during a design of MWSBs.The maximum allowable seepage discharge is a crucial index for the design of MWSBs,which has a significant influence on determining the design parameters of MWSBs.Compared with the design procedure for MWSBs that is proposed in this paper,the design parameters of MWSBs determined by the stability equilibrium and seepage stability equilibrium approaches are conservative due to the fact that it fails to consider the permeability or strength of jet-grouted materials that makes a contribution to the structural safety.Based on the proposed design method,the ranges of both the thickness and depth of MWSBs for a case history of subway excavation in Fuzhou,China were determined.Finally,field pumping test results showed that the water-tightness performance of MWSBs performed at site was quite well.
基金Projects(51978669,U1734208)supported by the National Natural Science Foundation of ChinaProject(2018JJ3657)supported by the Natural Science Foundation of Hunan Province,China
文摘When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided.