Contact problems are one of the most challenging fields in virtual assembly. Information of contact states could be utilized to realize compliant motion of work pieces, to analyze the contact stress, to assist positio...Contact problems are one of the most challenging fields in virtual assembly. Information of contact states could be utilized to realize compliant motion of work pieces, to analyze the contact stress, to assist positioning parts and so on. Some methods have already been proposed to estimate contact states between objects and in most of these methods contact states between objects are simplified in order to realize real-time visual reality animation. While in virtual assembly contact states between parts are required to analyze contact stress, deformation and quality. Besides the contact state estimation method for virtual assembly should be able to handle a number of complex parts in real time. There are rarely known methods which could meet this requirement till now. In this study a contact state estimation algorithm based on surface-matching for virtual assembly is proposed. Contacts between parts are categorized into six basic types according to contact region of surfaces. Based on continuous collision detection of polyhedral models a novel contact state identification algorithm which is based on surface matching is proposed. Then contact evolution algorithm, which utilizes the extern force and contact information, is implemented to handle evolution of contact state. Finally a prototype system is developed to verify the above technologies. Experiment results reveal that contact state between parts could be estimated correctly in real time virtual assembly. The proposed contact state estimation algorithm provides a complete solution to obtain the contact state between parts in virtual assembly. Information of contact state between parts could be utilized to realize contact dynamic, contact stress analysis, assembly quality analysis, and so on.展开更多
Earth Science from Space is an interdisciplinary discipline that studies the interactions,mechanisms,and evolution of the Earth system through space observation.In China,the national medium-to long-term civilian space...Earth Science from Space is an interdisciplinary discipline that studies the interactions,mechanisms,and evolution of the Earth system through space observation.In China,the national medium-to long-term civilian space infrastructure development plan and the space-science pilot project from the Chinese Academy of Sciences are two programs associated with advancing the Earth science from space.This paper reports recent scientific findings,developments and the status of the six missions.It is organized as the following sections:Introduction,two satellite missions that are already in orbit—the TanSat-1 for atmospheric COand the LuTan-1 for global surface deformation,a Terrestrial Ecosystem Carbon Inventory Satellite to be launched in 2022,and three missions that passed the PhaseⅡstudy and planned for near future—the Ocean Surface Current multiscale Observation,the Terrestrial Water Resources Satellite.Climate and Atmospheric Components Exploring Satellites(CACES),followed by the conclusion.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50805009)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing of China (Grant No. 07205)
文摘Contact problems are one of the most challenging fields in virtual assembly. Information of contact states could be utilized to realize compliant motion of work pieces, to analyze the contact stress, to assist positioning parts and so on. Some methods have already been proposed to estimate contact states between objects and in most of these methods contact states between objects are simplified in order to realize real-time visual reality animation. While in virtual assembly contact states between parts are required to analyze contact stress, deformation and quality. Besides the contact state estimation method for virtual assembly should be able to handle a number of complex parts in real time. There are rarely known methods which could meet this requirement till now. In this study a contact state estimation algorithm based on surface-matching for virtual assembly is proposed. Contacts between parts are categorized into six basic types according to contact region of surfaces. Based on continuous collision detection of polyhedral models a novel contact state identification algorithm which is based on surface matching is proposed. Then contact evolution algorithm, which utilizes the extern force and contact information, is implemented to handle evolution of contact state. Finally a prototype system is developed to verify the above technologies. Experiment results reveal that contact state between parts could be estimated correctly in real time virtual assembly. The proposed contact state estimation algorithm provides a complete solution to obtain the contact state between parts in virtual assembly. Information of contact state between parts could be utilized to realize contact dynamic, contact stress analysis, assembly quality analysis, and so on.
文摘Earth Science from Space is an interdisciplinary discipline that studies the interactions,mechanisms,and evolution of the Earth system through space observation.In China,the national medium-to long-term civilian space infrastructure development plan and the space-science pilot project from the Chinese Academy of Sciences are two programs associated with advancing the Earth science from space.This paper reports recent scientific findings,developments and the status of the six missions.It is organized as the following sections:Introduction,two satellite missions that are already in orbit—the TanSat-1 for atmospheric COand the LuTan-1 for global surface deformation,a Terrestrial Ecosystem Carbon Inventory Satellite to be launched in 2022,and three missions that passed the PhaseⅡstudy and planned for near future—the Ocean Surface Current multiscale Observation,the Terrestrial Water Resources Satellite.Climate and Atmospheric Components Exploring Satellites(CACES),followed by the conclusion.