The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication...The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.展开更多
The major challenge faced by wireless mesh networks is the capacity reduction caused by interference,and interference can be reduced or even eliminated through appropriate channel assignment.This article presents a co...The major challenge faced by wireless mesh networks is the capacity reduction caused by interference,and interference can be reduced or even eliminated through appropriate channel assignment.This article presents a comprehensive survey of channel assignment schemes for multicast in multi-radio multi-channel wireless mesh networks.We analyze the state-of-the-art channel assignment schemes for multicast and provide comprehensive taxonomy of the latest work.In general,we classify the channel assignment schemes for multicast into two types,that is,sequential multicast routing and channel assignment(SMRCA)and joint multicast routing and channel assignment(JMRCA).Detailed review of channel assignment schemes in each category is provided.Possible future research directions and corresponding solutions are also explored to motivate research interests in the field of channel assignment for multicast in wireless mesh networks.展开更多
Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case wh...Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.展开更多
The application of high-frame-rate cameras as well as the complex image processing techniques will lead to a series of problems,such as high system cost and long transmission delay.In this paper,we introduce narrow-ba...The application of high-frame-rate cameras as well as the complex image processing techniques will lead to a series of problems,such as high system cost and long transmission delay.In this paper,we introduce narrow-band filtering technology to reduce the impact of optical noise and reduce the complexity of image processing from the physical level.We also introduce multiple-input multiple-output(MIMO)technology into the optical camera communication(OCC)system to increase system transmission rate,and propose a light emitting diode(LED)array decoding algorithm based on the directional projection method to reduce the system delay.By accumulating the target pixel values in each row and column of the image,the proposed method then determines the position and boundary of the detected target to distinguish the target area from the background.Experimental results indicate that the communication distance can reach up to 5.5 m without error bits detected.When the LED array at the transmitter of this system flashes at a frequency of 12 Hz,the transmission rate can reach 126.32 bit/s.展开更多
The performance of decoding algorithm is one of the important influential factors to determine the communication quality of optical camera communication(OCC) system. In this paper, we first propose a decoding algorith...The performance of decoding algorithm is one of the important influential factors to determine the communication quality of optical camera communication(OCC) system. In this paper, we first propose a decoding algorithm with adaptive thresholding based on the captured pixel values under an ideal environment, and then we further propose a decoding algorithm with multiple features, which is more suitable under the existence of the interference of light sources. The algorithm firstly determines the light-emitting diode(LED) array profile information by removing the interfering light sources through geometric features, and then identifies the LED state by calculating two grayscale features, the average gray ratio(AGR) and the gradient radial inwardness(GRI) of the LEDs, and finally obtains the LED state matrix. The experimental results show that the bit error ratio(BER) of the decoding algorithm with multiple features decreases from 1×10^(-2) to 5×10^(-4) at 80 m.展开更多
基金supported by National Nature Science Foundation of China (No. 61373124)supported by China Scholarship Funds (2014CB3033)
文摘The key techniques in indoor positioning based on visible light communication and the state of the art of this research were surveyed. First, the significance of indoor positioning based on visible light communication from two aspects of the limitations of current indoor positioning technology and the advantages of visible light communication was discussed; And then, the main four technology of indoor positioning based on visible light communication were summarized and the triangulation of RSS method and the principle of image positioning were introduced in detail; Next, the performance characteristics of various typical algorithms were compared and analyzed; In the end, several suggestions on future research of indoor positioning based on visible light communication were given.
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘The major challenge faced by wireless mesh networks is the capacity reduction caused by interference,and interference can be reduced or even eliminated through appropriate channel assignment.This article presents a comprehensive survey of channel assignment schemes for multicast in multi-radio multi-channel wireless mesh networks.We analyze the state-of-the-art channel assignment schemes for multicast and provide comprehensive taxonomy of the latest work.In general,we classify the channel assignment schemes for multicast into two types,that is,sequential multicast routing and channel assignment(SMRCA)and joint multicast routing and channel assignment(JMRCA).Detailed review of channel assignment schemes in each category is provided.Possible future research directions and corresponding solutions are also explored to motivate research interests in the field of channel assignment for multicast in wireless mesh networks.
基金supported by the National Natural Science Foundation of China under Grants No.61373124
文摘Capacity reduction is a major problem faced by wireless mesh networks. An efficient way to alleviate this problem is proper channel assignment. Current end-toend channel assignment schemes usually focus on the case where channels in distinct frequency bands are assigned to mesh access and backbone, but actually backbone network and access network can use the same IEEE 802.11 technology. Besides, these channel assignment schemes only utilize orthogonal channels to perform channel assignment, and the resulting network interference dramatically degrades network performance. Moreover, Internet-oriented traffic is considered only, and peerto-peer traffic is omitted, or vice versa. The traffic type does not match the practical network. In this paper, we explore how to exploit partially overlapped channels to perform endto-end channel assignment in order to achieve effective end-to-end flow transmissions. The proposed flow-based end-to-end channel assignment schemes can conquer the limitations aforementioned. Simulations reveal that loadaware channel assignment can be applied to networks with stable traffic load, and it can achieve near-optimal performance; Traffic-irrelevant channel assignment is suitable for networks with frequent change of traffic load,and it can achieve good balance between performance and overhead. Also, partially overlapped channels' capability of improving network performance is situation-dependent, they should be used carefully.
基金supported by the Department of Science and Technology of Jilin Province(No.20200401122GX)
文摘The application of high-frame-rate cameras as well as the complex image processing techniques will lead to a series of problems,such as high system cost and long transmission delay.In this paper,we introduce narrow-band filtering technology to reduce the impact of optical noise and reduce the complexity of image processing from the physical level.We also introduce multiple-input multiple-output(MIMO)technology into the optical camera communication(OCC)system to increase system transmission rate,and propose a light emitting diode(LED)array decoding algorithm based on the directional projection method to reduce the system delay.By accumulating the target pixel values in each row and column of the image,the proposed method then determines the position and boundary of the detected target to distinguish the target area from the background.Experimental results indicate that the communication distance can reach up to 5.5 m without error bits detected.When the LED array at the transmitter of this system flashes at a frequency of 12 Hz,the transmission rate can reach 126.32 bit/s.
基金supported by the Department of Science and Technology of Jilin Province (No.20200401122GX)。
文摘The performance of decoding algorithm is one of the important influential factors to determine the communication quality of optical camera communication(OCC) system. In this paper, we first propose a decoding algorithm with adaptive thresholding based on the captured pixel values under an ideal environment, and then we further propose a decoding algorithm with multiple features, which is more suitable under the existence of the interference of light sources. The algorithm firstly determines the light-emitting diode(LED) array profile information by removing the interfering light sources through geometric features, and then identifies the LED state by calculating two grayscale features, the average gray ratio(AGR) and the gradient radial inwardness(GRI) of the LEDs, and finally obtains the LED state matrix. The experimental results show that the bit error ratio(BER) of the decoding algorithm with multiple features decreases from 1×10^(-2) to 5×10^(-4) at 80 m.