Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Ye...Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphau- sia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplank- ton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and win- ter. The total zooplankton abundance averaged 283.5 ind./m3 in spring (highest), 192.5 ind./m3 in summer, 165.5 ind./m3 in autumn and 65.9 ind./m3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index HI of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.展开更多
In theory, land subsidence measurement results with high accuracy can be obtained by using the Differential Interferometry Synthetic Aperture Radar(D-InSAR) at X-band. In practice, however, the measuring accuracy of D...In theory, land subsidence measurement results with high accuracy can be obtained by using the Differential Interferometry Synthetic Aperture Radar(D-InSAR) at X-band. In practice, however, the measuring accuracy of D-InSAR at X-band has been seriously affected by some factors, e.g., decorrelation and high deformation gradient. In this work, the monitoring capability of D-InSAR for coal-mining subsidence is evaluated by using SAR data acquired by TerrraSAR-X system. The SAR image registration method for low coherence image pairs, the denoising phase filter for high noise level interferogram and atmospheric effects mitigation method are the key technical aspects which directly influence the measurement results of D-InSAR at X-band. Thus, a robust image registration method, an improved phase filter method and an atmospheric effects mitigation method are proposed in this paper. The proposed image registration method successfully achieves InSAR coregistration, while the amplitude cross-correlation cannot properly coregister low coherence SAR image pairs. Moreover, the time complexity of the proposed image registration method is obviously slighter than that of the Singular Value Decomposition(SVD) method. The comparing experiment results and the unwrapping phase results show that the improved Goldstein filter is more effective than the original Goldstein filter in noise elimination. The atmospheric influence correction experiment results show that the land subsidence areas with atmospheric influence correction are more clarified than that of without atmospheric influence correction. In summary, the presented methods directly improved the measurement results of D-InSAR at X-band.展开更多
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwellin...Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.展开更多
This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the...This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.展开更多
This paper concentrates on the data processing of Frequency Modulation Continuous Wave(FMCW),Synthetic Aperture Radar(SAR)in the case of wide swath and squint mode.In the mode,the Doppler centroid dramatically varies ...This paper concentrates on the data processing of Frequency Modulation Continuous Wave(FMCW),Synthetic Aperture Radar(SAR)in the case of wide swath and squint mode.In the mode,the Doppler centroid dramatically varies along slant range compared to conventional pulsed-SAR.This poses a challenge for system design and signal processing since a very large azimuth bandwidth would be introduced.In the paper,we accommodate the Doppler centroid variations with range by an improved spectral-length extension method,where a bulk range shift and updated Doppler centroid variations are introduced to greatly reduce the azimuth aliasing with respective to the existing methods.Moreover,an image formation approach that integrates wave number domain algorithm is presented to focus the raw data of FMCW SAR in the case of wide swath and squint mode.Point target simulation experiment demonstrates the advantages of the presented method.展开更多
The paper presents a high-resolution automobile Frequency Modulation Continuous Wave Synthetic Aperture Radar(FMCW SAR) named MiniSAR and the procedure of its signal processing.The imaging geometry of automobile SAR i...The paper presents a high-resolution automobile Frequency Modulation Continuous Wave Synthetic Aperture Radar(FMCW SAR) named MiniSAR and the procedure of its signal processing.The imaging geometry of automobile SAR is very different from that of airborne SAR,leading to a different data processing method for automobile SAR.Therefore,in the paper,we propose an image formation approach that can well handle the focusing issues of automobile SAR.The effects of the strong reflected signal and the spatial-variant synthetic aperture length are analyzed.The processed results with automobile FMCW SAR read data validate the presented method.展开更多
基金The National Offshore Comprehensive Marine Investigation and Assessment Project under contract No.908-01-ST03the National Key Basic Research Project under contract No.2010CB428703+1 种基金the Fundamental Research Funds for the First Institute of Oceanography under contract No.GY02-2010T05the China-Korea Cooperative Research on the Yellow Sea Cold Water Mass
文摘Samples were collected with a plankton net in the four seasonal cruises during 2006-2007 to study the seasonal variability of the zooplankton community in the southwest part of Huanghai Sea Cold Water Mass (HSCWM, Yellow Sea Cold Water Mass). The spatial and temporal variations of zooplankton species composition, biomass, abundance and biodiversity were examined. A total of 122 zooplankton species and 30 pelagic larvae were identified in the four cruises. Calanus sinicus and Aidanosagitta crassa were the most dominant species, and Themisto gaudichaudi and Euphau- sia pacifica were widely distributed in the HSCWM area. The spatial patterns of non-gelatinous zooplankton (removing the high water content groups) were similar to those of the total zooplank- ton biomass in autumn, but different significantly in the other three seasons. The seasonal means of zooplankton biomass in spring and summer were much higher than that in autumn and win- ter. The total zooplankton abundance averaged 283.5 ind./m3 in spring (highest), 192.5 ind./m3 in summer, 165.5 ind./m3 in autumn and 65.9 ind./m3 in winter (lowest), and the non-gelatinous groups contributed the most total abundance. Correlation analysis suggests that the non-gelatinous zooplankton biomass and abundance had a significant positive correlation in the whole year, but the relationship was insignificant between the total zooplankton biomass and abundance in spring and summer. The diversity index HI of zooplankton community averaged 1.88 in this study, which was somewhat higher than historical results. Relatively low diversity in summer was related to the high dominance of Calanus sinicus, probably due to the strongest effect of the HSCWM in this season.
文摘In theory, land subsidence measurement results with high accuracy can be obtained by using the Differential Interferometry Synthetic Aperture Radar(D-InSAR) at X-band. In practice, however, the measuring accuracy of D-InSAR at X-band has been seriously affected by some factors, e.g., decorrelation and high deformation gradient. In this work, the monitoring capability of D-InSAR for coal-mining subsidence is evaluated by using SAR data acquired by TerrraSAR-X system. The SAR image registration method for low coherence image pairs, the denoising phase filter for high noise level interferogram and atmospheric effects mitigation method are the key technical aspects which directly influence the measurement results of D-InSAR at X-band. Thus, a robust image registration method, an improved phase filter method and an atmospheric effects mitigation method are proposed in this paper. The proposed image registration method successfully achieves InSAR coregistration, while the amplitude cross-correlation cannot properly coregister low coherence SAR image pairs. Moreover, the time complexity of the proposed image registration method is obviously slighter than that of the Singular Value Decomposition(SVD) method. The comparing experiment results and the unwrapping phase results show that the improved Goldstein filter is more effective than the original Goldstein filter in noise elimination. The atmospheric influence correction experiment results show that the land subsidence areas with atmospheric influence correction are more clarified than that of without atmospheric influence correction. In summary, the presented methods directly improved the measurement results of D-InSAR at X-band.
基金The Global Change and Air-Sea Interaction Program under contract Nos GASI-02-IND-ST-Sspr and GASI-03-01-03-03the National Natural Science Foundation of China under contract No.41506185the Special Funds for Basic Ocean Science Research of the First Institute of Oceanography,State Oceanic Administration of China under contract Nos 2013T04 and 2012T08
文摘Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.
文摘This paper presents a closed-form robust phase correlation based algorithm for performing image registration to subpixel accuracy.The subpixel translational shift information is directly obtained from the phase of the normalized cross power spectrum by using Maximum Likelihood Estimation(MLE).The proposed algorithm also has slighter time complexity.Experimental results show that the proposed algorithm yields superior registration precision on the Cramér-Rao Bound(CRB) in the presence of aliasing and noise.
基金Supported jointly by the Hundred Talents Program of the Chinese Academy of SciencesGeneral Program of National Natural Science Foundation of China(No.6117212)
文摘This paper concentrates on the data processing of Frequency Modulation Continuous Wave(FMCW),Synthetic Aperture Radar(SAR)in the case of wide swath and squint mode.In the mode,the Doppler centroid dramatically varies along slant range compared to conventional pulsed-SAR.This poses a challenge for system design and signal processing since a very large azimuth bandwidth would be introduced.In the paper,we accommodate the Doppler centroid variations with range by an improved spectral-length extension method,where a bulk range shift and updated Doppler centroid variations are introduced to greatly reduce the azimuth aliasing with respective to the existing methods.Moreover,an image formation approach that integrates wave number domain algorithm is presented to focus the raw data of FMCW SAR in the case of wide swath and squint mode.Point target simulation experiment demonstrates the advantages of the presented method.
基金Supported jointly by the Hundred Talents Program of the Chinese Academy of Sciences and General Program of National Natural Science Foundation of China(No.6117212)
文摘The paper presents a high-resolution automobile Frequency Modulation Continuous Wave Synthetic Aperture Radar(FMCW SAR) named MiniSAR and the procedure of its signal processing.The imaging geometry of automobile SAR is very different from that of airborne SAR,leading to a different data processing method for automobile SAR.Therefore,in the paper,we propose an image formation approach that can well handle the focusing issues of automobile SAR.The effects of the strong reflected signal and the spatial-variant synthetic aperture length are analyzed.The processed results with automobile FMCW SAR read data validate the presented method.