The cephalopod beak is a vital hard structure with a stable configuration and has been widely used for the identification of cephalopod species. This study was conducted to determine the best standardization method fo...The cephalopod beak is a vital hard structure with a stable configuration and has been widely used for the identification of cephalopod species. This study was conducted to determine the best standardization method for identifying different species by measuring 12 morphological variables of the beaks of Illex argentinus, Ommastrephes bartramii, and Dosidicus gigas that were collected by Chinese jigging vessels. To remove the effects of size, these morphometric variables were standardized using three methods. The average ratios of the upper beak morphological variables and upper crest length of O. bartramii and D. gigas were found to be greater than those of I. argentinus. However, for lower beaks, only the average of LRL(lower rostrum length)/LCL(lower crest length), LRW(lower rostrum width)/LCL, and LLWL(lower lateral wall length)/LCL of O. bartramii and D. gigas were greater than those of I. argentinus. The ratios of beak morphological variables and crest length were found to be all significantly different among the three species(P < 0.001). Among the three standardization methods, the correct classification rate of stepwise discriminant analysis(SDA) was the highest using the ratios of beak morphological variables and crest length. Compared with hood length, the correct classification rate was slightly higher when using beak variables standardized by crest length using an allometric model. The correct classification rate of the lower beak was also found to be greater than that of the upper beak. This study indicates that the ratios of beak morphological variables to crest length could be used for interspecies and intraspecies identification. Meanwhile, the lower beak variables were found to be more effective than upper beak variables in classifying beaks found in the stomachs of predators.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41306127 and 41276156)the National Science Foundation of Shanghai(No.13ZR1419700)+3 种基金the Innovation Program of Shanghai Municipal Education Commission(No.13YZ091)the Shanghai Leading Academic Discipline Project(Fisheries Discipline)supported by Shanghai Ocean University(SHOU)International Center for Marine StudiesShanghai Visiting 1000 Talent Program
文摘The cephalopod beak is a vital hard structure with a stable configuration and has been widely used for the identification of cephalopod species. This study was conducted to determine the best standardization method for identifying different species by measuring 12 morphological variables of the beaks of Illex argentinus, Ommastrephes bartramii, and Dosidicus gigas that were collected by Chinese jigging vessels. To remove the effects of size, these morphometric variables were standardized using three methods. The average ratios of the upper beak morphological variables and upper crest length of O. bartramii and D. gigas were found to be greater than those of I. argentinus. However, for lower beaks, only the average of LRL(lower rostrum length)/LCL(lower crest length), LRW(lower rostrum width)/LCL, and LLWL(lower lateral wall length)/LCL of O. bartramii and D. gigas were greater than those of I. argentinus. The ratios of beak morphological variables and crest length were found to be all significantly different among the three species(P < 0.001). Among the three standardization methods, the correct classification rate of stepwise discriminant analysis(SDA) was the highest using the ratios of beak morphological variables and crest length. Compared with hood length, the correct classification rate was slightly higher when using beak variables standardized by crest length using an allometric model. The correct classification rate of the lower beak was also found to be greater than that of the upper beak. This study indicates that the ratios of beak morphological variables to crest length could be used for interspecies and intraspecies identification. Meanwhile, the lower beak variables were found to be more effective than upper beak variables in classifying beaks found in the stomachs of predators.