Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ...Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.展开更多
Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable e...Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable environmental protection and economic development.In this study,we reviewed the history of coastal zone planning since its birth in the 1950s based on the literature retrieved from the Web of Science(Core Collection)from 2000–2023,then summarized the tools and spatial allocation methods commonly used in the planning process,and finally proposed potential solutions to the challenges faced.The results show that after decades of development,coastal zone planning has changed from a decentralized activity to a targeted and integrated one,with an increasing emphasis on the ecosystem approach and the use of multiple planning tools.Spatial analysis techniques and environmental modelling software have become increasingly popular.Linear programming and overlay analysis are common approaches when performing spatial optimization,but land-sea interactions and planning in the marine parts still lack in-depth analysis and practical experience.We are also aware that the challenges posed by the integration of administrative hierarchies,scoping and conservation objectives,stakeholder participation,consideration of social dimensions,and climate change are pervasive throughout the planning process.There is an urgent need to develop more flexible and accurate spatial modelling tools,as well as more efficient participatory methods,and to focus on the holistic nature of the land-sea system to create more resilient and sustainable coastal zones.展开更多
A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications ...A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradi- ent cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be deter- mined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts.展开更多
Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-...Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-subsampled wavelet transform (TSO-NSWT) for optical and SAR image registration was proposed. Moreover, the matching for this proposed feature was different from the traditional feature matching strategies and was performed using a similarity measure computed from neighborhood circles in low-frequency bands. Then, a number of reliably matched couples with even distributions were obtained, which assured the accuracy of the registration. Application of the proposed algorithm to SPOT-5 (multi-spectral) and YG-1 (SAR) images showed that a large number of accurately matched couples could be identified. Additionally, both of the root mean square error (RMSE) patterns of the registration parameters computed based on the TSO-NSWT algorithm and traditional NSWT algorithm were analyzed and compared, which further demonstrated the effectiveness of the proposed algorithm. The algorithm can supply the crucial step for island image registration and island recognition.展开更多
Marine geographic information system (MGIS) has great ability to deal with the spatio-temporal problems and has potential superiority when it is applied to oceanography. Using the feature extraction of oceanic pheno...Marine geographic information system (MGIS) has great ability to deal with the spatio-temporal problems and has potential superiority when it is applied to oceanography. Using the feature extraction of oceanic phenomena as a case study, the functions of the MGIS are analyzed, and thus the position of MGIS in the oceanography is defined. Comparing the requirement of MGIS with that of the traditional GIS which has been developed in the terrestrial applications in the past four decades, the frame for the functions of MGIS is constructed. According to the established MGIS, some key technologies are discussed in detail with emphasis on the specialities which can distinguish the MGIS from the traditional GIS.展开更多
The construction of oceanographic ontologies is fundamental to the "digital ocean". Therefore, on the basis of introduction of new concept of oceanographic ontology, an oceanographic ontology-based spatial knowledge...The construction of oceanographic ontologies is fundamental to the "digital ocean". Therefore, on the basis of introduction of new concept of oceanographic ontology, an oceanographic ontology-based spatial knowledge query (OOBSKQ) method was proposed and developed. Because the method uses a natural language to describe query conditions and the query result is highly integrated knowledge, it can provide users with direct answers while hiding the complicated computation and reasoning processes, and achieves intelligent, automatic oceanographic spatial information query on the level of knowledge and semantics. A case study of resource and environmental application in bay has shown the implementation process of the method and its feasibility and usefulness.展开更多
Coral bleaching, caused by elevated sea surface temperature(SST), is occurring more frequently and seriously worldwide. Due to the lack of field observations, we understand little about the large-scale variability of ...Coral bleaching, caused by elevated sea surface temperature(SST), is occurring more frequently and seriously worldwide. Due to the lack of field observations, we understand little about the large-scale variability of thermal stress in the South China Sea(SCS) and its effect on China's coral reefs. This paper used 4-km high resolution gap-filled SST(Filled SST) data and thermal stress data related to coral bleaching derived from Coral Reef Temperature Anomaly Database(Co RTAD) to quantify the spatial and temporal characteristics of chronic thermal stress and acute thermal stress to China's coral reefs in SCS from 1982 to 2009. We analyzed the trend of SST in summer and the thermal stress frequency, intensity and duration during this period. The results indicate that, as a chronic thermal stress, summer mean SST in SCS shows an average upward trend of 0.2℃/decade and the spatial pattern is heterogeneous. Waters of Xisha Islands and Dongsha Islands of the northern SCS are warming faster through time compared to Zhongsha Islands and Nansha Islands sea areas of the southern SCS. High frequency bleaching related thermal stress events for these reefs are seen in the area to the northwest of Luzon Island. Severe anomaly thermal stress events are more likely to occur during the subsequent year of the El Nino year for these coral reefs. Besides, the duration of thermal stress varies considerably by anomaly year and by region.展开更多
It is urgent and necessary to integrate a marine geographical information system (MGIS) with marine remote sensing detection modules. On the basis of the current technology and features of applications, an open thre...It is urgent and necessary to integrate a marine geographical information system (MGIS) with marine remote sensing detection modules. On the basis of the current technology and features of applications, an open three-layer integration framework is designed. At the data layer, a two-level three-base integration mechanism based on the plug-in technology is applied; At the function layer, an integration mode based on API, DLL, EXE and COM is discussed; and at the application layer, a sharing mechanism based on the clients/service is adopted. As an example, the remote sensing integrated application information system of China's coastal zone and offshore (MaXplorer1. 0) with muhiecology remote sensing fusion and assimilation module, surge detection module as well as eight other thematic application modules is integrated, and the key technology of integration is discussed at different layers and in different modules. The result shows that it is possible to realize the conformity of technology and resources and to provide the incorporate technology platform for marine information operational functioning after applying the integration framework.展开更多
Analysis of ocean fronts' uncertainties indicates that they result from indiscemibility of their spatial position and fuzziness of their intensity. In view of this, a flow hierarchy for uncertainty representation of ...Analysis of ocean fronts' uncertainties indicates that they result from indiscemibility of their spatial position and fuzziness of their intensity. In view of this, a flow hierarchy for uncertainty representation of ocean fronts is proposed on the basis of fuzzy-rough set theory. Firstly, raster scanning and blurring are carried out on an ocean front, and the upper and lower approximate sets, the indiscernible relation in fuzzy-rough theories and related operators in fuzzy set theories are adopted to represent its uncertainties, then they are classified into three sets: with members one hundred percent belonging to the ocean front, belonging to the ocean front's edge and definitely not belonging to the ocean front. Finally, the approximate precision and roughness degree are utilized to evaluate the ocean front's degree of uncertainties and the precision of the representation. It has been proven that the method is not only capable of representing ocean fronts' uncertainties, but also provides a new theory and method for uncertainty representation of other oceanic phenomena.展开更多
基金Under the auspices of National Key Research and Development Program of China (No.2022YFC3103103)。
文摘Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.
基金Under the auspices of National Key R&D Plan (No.2022YFB3903604)the Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2023060)Key Project of Innovation LREIS (No.KPI001)。
文摘Coastal zones are dynamic,rich environments,now densely populated,and increasingly challenged by human and climatechange pressures.Effective long-term integrated coastal zone planning is needed to ensure sustainable environmental protection and economic development.In this study,we reviewed the history of coastal zone planning since its birth in the 1950s based on the literature retrieved from the Web of Science(Core Collection)from 2000–2023,then summarized the tools and spatial allocation methods commonly used in the planning process,and finally proposed potential solutions to the challenges faced.The results show that after decades of development,coastal zone planning has changed from a decentralized activity to a targeted and integrated one,with an increasing emphasis on the ecosystem approach and the use of multiple planning tools.Spatial analysis techniques and environmental modelling software have become increasingly popular.Linear programming and overlay analysis are common approaches when performing spatial optimization,but land-sea interactions and planning in the marine parts still lack in-depth analysis and practical experience.We are also aware that the challenges posed by the integration of administrative hierarchies,scoping and conservation objectives,stakeholder participation,consideration of social dimensions,and climate change are pervasive throughout the planning process.There is an urgent need to develop more flexible and accurate spatial modelling tools,as well as more efficient participatory methods,and to focus on the holistic nature of the land-sea system to create more resilient and sustainable coastal zones.
基金The National Key Technology R&D Program of China under contract No.2011BAH23B04the National High Technology Research and Development Program(863 Program)of China under contract No.2007AA092202
文摘A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel- lite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradi- ent cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be deter- mined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts.
基金The National Natural Science Foundation of China under contract No.41271409the National Key Technology Research and Development Program under contract No.2011BAH23B00the National High Technology Research and Development Program(863 Program)of China under contract No.2012AA12A406
文摘Homologous feature point extraction is a key problem in the optical and synthetic aperture radar (SAR) image registration for islands. A new feature point extraction method using a threshold shrink operator and non-subsampled wavelet transform (TSO-NSWT) for optical and SAR image registration was proposed. Moreover, the matching for this proposed feature was different from the traditional feature matching strategies and was performed using a similarity measure computed from neighborhood circles in low-frequency bands. Then, a number of reliably matched couples with even distributions were obtained, which assured the accuracy of the registration. Application of the proposed algorithm to SPOT-5 (multi-spectral) and YG-1 (SAR) images showed that a large number of accurately matched couples could be identified. Additionally, both of the root mean square error (RMSE) patterns of the registration parameters computed based on the TSO-NSWT algorithm and traditional NSWT algorithm were analyzed and compared, which further demonstrated the effectiveness of the proposed algorithm. The algorithm can supply the crucial step for island image registration and island recognition.
基金funded by the Project of"973"Program of China under contract No.2006 CB701305the National Natural Science Foundation of China under contract No.40571129.
文摘Marine geographic information system (MGIS) has great ability to deal with the spatio-temporal problems and has potential superiority when it is applied to oceanography. Using the feature extraction of oceanic phenomena as a case study, the functions of the MGIS are analyzed, and thus the position of MGIS in the oceanography is defined. Comparing the requirement of MGIS with that of the traditional GIS which has been developed in the terrestrial applications in the past four decades, the frame for the functions of MGIS is constructed. According to the established MGIS, some key technologies are discussed in detail with emphasis on the specialities which can distinguish the MGIS from the traditional GIS.
基金This study was supported by the“863”Marine Monitor of High-tech Research and Development Program of China under contracts Nos 2003AA604040 and 2003AA637030.
文摘The construction of oceanographic ontologies is fundamental to the "digital ocean". Therefore, on the basis of introduction of new concept of oceanographic ontology, an oceanographic ontology-based spatial knowledge query (OOBSKQ) method was proposed and developed. Because the method uses a natural language to describe query conditions and the query result is highly integrated knowledge, it can provide users with direct answers while hiding the complicated computation and reasoning processes, and achieves intelligent, automatic oceanographic spatial information query on the level of knowledge and semantics. A case study of resource and environmental application in bay has shown the implementation process of the method and its feasibility and usefulness.
基金Under the auspices of National High Technology Research and Development Program of China(No.2012AA12A406)
文摘Coral bleaching, caused by elevated sea surface temperature(SST), is occurring more frequently and seriously worldwide. Due to the lack of field observations, we understand little about the large-scale variability of thermal stress in the South China Sea(SCS) and its effect on China's coral reefs. This paper used 4-km high resolution gap-filled SST(Filled SST) data and thermal stress data related to coral bleaching derived from Coral Reef Temperature Anomaly Database(Co RTAD) to quantify the spatial and temporal characteristics of chronic thermal stress and acute thermal stress to China's coral reefs in SCS from 1982 to 2009. We analyzed the trend of SST in summer and the thermal stress frequency, intensity and duration during this period. The results indicate that, as a chronic thermal stress, summer mean SST in SCS shows an average upward trend of 0.2℃/decade and the spatial pattern is heterogeneous. Waters of Xisha Islands and Dongsha Islands of the northern SCS are warming faster through time compared to Zhongsha Islands and Nansha Islands sea areas of the southern SCS. High frequency bleaching related thermal stress events for these reefs are seen in the area to the northwest of Luzon Island. Severe anomaly thermal stress events are more likely to occur during the subsequent year of the El Nino year for these coral reefs. Besides, the duration of thermal stress varies considerably by anomaly year and by region.
基金The Project of"863"Program of China under contract No. 2004AA639820the National Natural Science Foundation of China undercontract No. 40571129
文摘It is urgent and necessary to integrate a marine geographical information system (MGIS) with marine remote sensing detection modules. On the basis of the current technology and features of applications, an open three-layer integration framework is designed. At the data layer, a two-level three-base integration mechanism based on the plug-in technology is applied; At the function layer, an integration mode based on API, DLL, EXE and COM is discussed; and at the application layer, a sharing mechanism based on the clients/service is adopted. As an example, the remote sensing integrated application information system of China's coastal zone and offshore (MaXplorer1. 0) with muhiecology remote sensing fusion and assimilation module, surge detection module as well as eight other thematic application modules is integrated, and the key technology of integration is discussed at different layers and in different modules. The result shows that it is possible to realize the conformity of technology and resources and to provide the incorporate technology platform for marine information operational functioning after applying the integration framework.
基金The research was partially funded by the Project 40571129 supported by the National Natural Science Foundation of ChinaInnovative Program(No.kzcx2-yw-304-1)supported by the Chinese Academy of Sciences.
文摘Analysis of ocean fronts' uncertainties indicates that they result from indiscemibility of their spatial position and fuzziness of their intensity. In view of this, a flow hierarchy for uncertainty representation of ocean fronts is proposed on the basis of fuzzy-rough set theory. Firstly, raster scanning and blurring are carried out on an ocean front, and the upper and lower approximate sets, the indiscernible relation in fuzzy-rough theories and related operators in fuzzy set theories are adopted to represent its uncertainties, then they are classified into three sets: with members one hundred percent belonging to the ocean front, belonging to the ocean front's edge and definitely not belonging to the ocean front. Finally, the approximate precision and roughness degree are utilized to evaluate the ocean front's degree of uncertainties and the precision of the representation. It has been proven that the method is not only capable of representing ocean fronts' uncertainties, but also provides a new theory and method for uncertainty representation of other oceanic phenomena.