The shape and thickness qualities of strip are influenced by the vibration of rolling mill. At present, the researches on the vibration of rolling mill are mainly the vertical vibration and torsional vibration of sing...The shape and thickness qualities of strip are influenced by the vibration of rolling mill. At present, the researches on the vibration of rolling mill are mainly the vertical vibration and torsional vibration of single stand mill, the study on the vibration of tandem rolling mill is rare. For the vibration of tandem rolling mill, the key problem is the vibration of the moving strip between stands. In this paper, considering the dynamic of moving strip and rolling theory, the vertical vibration of moving strip in the rolling process was proposed. Take the moving strip between the two mills of tandem rolling mill in the rolling process as subject investigated, according to the theory of moving beam, the vertical vibration model of moving strip in the rolling process was established. The partial differential equation was discretized by Galerkin truncation method. The natural frequency and stability of the moving strip were investigated and the numerical simulation in time domain was made. Simulation results show that, the natural frequency was strongly influenced by the rolling velocity and tension. With increasing of the rolling velocity, the first three natural frequencies decrease, the fourth natural frequency increases; with increasing of the unit tension, when the rolling velocity is high and low, respectively, the low order dimensionless natural frequency gradually decreases and increases, respectively. According to the stability of moving strip, the critical speed was determined, and the matching relationship of the tension and rolling velocity was also determined. This model can be used to study the stability of moving strip, improve the quality of strip and develop new rolling technology from the aspect of dynamics.展开更多
The crown is a key quality index of strip and plate, the rolling mill system is a complex nonlinear system, the strip qualities are directly affected by the dynamic characteristics of the rolling mil. At present, the ...The crown is a key quality index of strip and plate, the rolling mill system is a complex nonlinear system, the strip qualities are directly affected by the dynamic characteristics of the rolling mil. At present, the studies about the dynamic modeling of the rolling mill system mainly focus on the dynamic simulation for the strip thickness control system, the dynamic characteristics of the strip along the width direction and that of the rolls along axial direction are not considered. In order to study the dynamic changes of strip crown in the roiling process, the dynamic simulation model based on strip crown control is established. The work roll and backup roll are considered as elastic continuous bodies and the work roll and backup roll are joined by a Winkler elastic layer. The rolls are considered as double freely supported beams. The change rate of roll gap is taken into consideration in the metal deformation, based on the principle of dynamic conservation of material flow, the two dimensional dynamic model of metal is established. The model of metal deformation provides exciting force for the rolls dynamic model, and the roils dynamic model and metal deformation model couple together. Then, based on the two models, the dynamic model of rolling mill system based on strip crown control is established. The Newmark-13 method is used to solve the problem, and the dynamic changes of these parameters are obtained as follows: (1) The bending of work roll and backup roll changes with time; (2) The strip crown changes with time; (3) The distribution of rolling force changes with time. Take some cold tandem rolling mill as subject investigated, simulation results and the comparisons with experimental results show that the dynamic model built is rational and correct. The proposed research provides effective theory for optimization of device and technological parameters and development of new technology, plays an important role to improve the strip control precision and strip shape quality.展开更多
The rolling process is determined by the interaction of a number of different movements,during which the relative movement occurs between the vibrating roll system and the rolled piece,and the roll system's vibration...The rolling process is determined by the interaction of a number of different movements,during which the relative movement occurs between the vibrating roll system and the rolled piece,and the roll system's vibration interacts with the strip's deformation and rigid movement.So many parameters being involved leads to a complex mechanism of this coupling effect.Through testing and analyzing the vibration signals of the mill in the rolling process,the rolling mill's coupled model is established with comprehensive consideration of the coupling interaction between the mill's vertical vibration,its torsional vibration and the working roll's horizontal vibration,and vibration characteristics of different forms of rolling mill's vibration are analyzed under the coupling effect.With comprehensive attention to the relationship between the roll system,the moving strip and the rolling parameters'dynamic properties,and also from the strip thickness control point of view,further research is done on the coupling mechanism between the roll system's movement and the moving strip's characteristics in the rolling process.As a result,the law of inertial coupling and the stiffness coupling effect caused by different forms of the roll system's vibration is determined and the existence of nonlinear characteristics caused by the elastic deformation of moving strip is also found.Furthermore,a multi-parameter coupling-dynamic model is established which takes the tandem strip mill as its research object by making a detailed kinematics analysis of the roll system and using the principle of virtual work.The coupling-dynamic model proposes the instruction to describe the roll system's movement,and analyzes its dynamic response and working stability,and provides a theoretical basis for the realization of the strip thickness'dynamic control.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50875231)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘The shape and thickness qualities of strip are influenced by the vibration of rolling mill. At present, the researches on the vibration of rolling mill are mainly the vertical vibration and torsional vibration of single stand mill, the study on the vibration of tandem rolling mill is rare. For the vibration of tandem rolling mill, the key problem is the vibration of the moving strip between stands. In this paper, considering the dynamic of moving strip and rolling theory, the vertical vibration of moving strip in the rolling process was proposed. Take the moving strip between the two mills of tandem rolling mill in the rolling process as subject investigated, according to the theory of moving beam, the vertical vibration model of moving strip in the rolling process was established. The partial differential equation was discretized by Galerkin truncation method. The natural frequency and stability of the moving strip were investigated and the numerical simulation in time domain was made. Simulation results show that, the natural frequency was strongly influenced by the rolling velocity and tension. With increasing of the rolling velocity, the first three natural frequencies decrease, the fourth natural frequency increases; with increasing of the unit tension, when the rolling velocity is high and low, respectively, the low order dimensionless natural frequency gradually decreases and increases, respectively. According to the stability of moving strip, the critical speed was determined, and the matching relationship of the tension and rolling velocity was also determined. This model can be used to study the stability of moving strip, improve the quality of strip and develop new rolling technology from the aspect of dynamics.
基金supported by Hebei Provincial Natural Science Foundation of China (Grant No. E2012203177)National Science and Technology Support Plan of China (Grant No. 2011BAF15B01)+1 种基金Hebei Provincial Funds for Distinguished Young Scientists of China (Grant No.E2006001038)Open Project Program of National Engineering Research Center for Equipment and Technology of Cold Strip Rolling(Grant No. NECSR-201202)
文摘The crown is a key quality index of strip and plate, the rolling mill system is a complex nonlinear system, the strip qualities are directly affected by the dynamic characteristics of the rolling mil. At present, the studies about the dynamic modeling of the rolling mill system mainly focus on the dynamic simulation for the strip thickness control system, the dynamic characteristics of the strip along the width direction and that of the rolls along axial direction are not considered. In order to study the dynamic changes of strip crown in the roiling process, the dynamic simulation model based on strip crown control is established. The work roll and backup roll are considered as elastic continuous bodies and the work roll and backup roll are joined by a Winkler elastic layer. The rolls are considered as double freely supported beams. The change rate of roll gap is taken into consideration in the metal deformation, based on the principle of dynamic conservation of material flow, the two dimensional dynamic model of metal is established. The model of metal deformation provides exciting force for the rolls dynamic model, and the roils dynamic model and metal deformation model couple together. Then, based on the two models, the dynamic model of rolling mill system based on strip crown control is established. The Newmark-13 method is used to solve the problem, and the dynamic changes of these parameters are obtained as follows: (1) The bending of work roll and backup roll changes with time; (2) The strip crown changes with time; (3) The distribution of rolling force changes with time. Take some cold tandem rolling mill as subject investigated, simulation results and the comparisons with experimental results show that the dynamic model built is rational and correct. The proposed research provides effective theory for optimization of device and technological parameters and development of new technology, plays an important role to improve the strip control precision and strip shape quality.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)National Key Technology R&D Program of China(Grant No.2011BAF15B01)Hebei Provincial Natural Science Foundation of China(Grant No.E2012203177)
文摘The rolling process is determined by the interaction of a number of different movements,during which the relative movement occurs between the vibrating roll system and the rolled piece,and the roll system's vibration interacts with the strip's deformation and rigid movement.So many parameters being involved leads to a complex mechanism of this coupling effect.Through testing and analyzing the vibration signals of the mill in the rolling process,the rolling mill's coupled model is established with comprehensive consideration of the coupling interaction between the mill's vertical vibration,its torsional vibration and the working roll's horizontal vibration,and vibration characteristics of different forms of rolling mill's vibration are analyzed under the coupling effect.With comprehensive attention to the relationship between the roll system,the moving strip and the rolling parameters'dynamic properties,and also from the strip thickness control point of view,further research is done on the coupling mechanism between the roll system's movement and the moving strip's characteristics in the rolling process.As a result,the law of inertial coupling and the stiffness coupling effect caused by different forms of the roll system's vibration is determined and the existence of nonlinear characteristics caused by the elastic deformation of moving strip is also found.Furthermore,a multi-parameter coupling-dynamic model is established which takes the tandem strip mill as its research object by making a detailed kinematics analysis of the roll system and using the principle of virtual work.The coupling-dynamic model proposes the instruction to describe the roll system's movement,and analyzes its dynamic response and working stability,and provides a theoretical basis for the realization of the strip thickness'dynamic control.