Recent damages to the box-like structures caused by wave slamming have made it necessary to study the impact problems of this kind of structure. This paper showed findings from numerical simulations of the rigid/elast...Recent damages to the box-like structures caused by wave slamming have made it necessary to study the impact problems of this kind of structure. This paper showed findings from numerical simulations of the rigid/elastic structures, aiming to gain insights into the characteristics of the problem. The results of the rigid cases showed the significance of air compressibility during the impact process, while the slamming phenomena became quite different without the effect. In the elastic cases, the trapped air made the structure vibrate at frequencies much smaller than its eigenfrequencies. Besides, the structural deformation made it easy for the trapped air to escape outwards, which weakened the air cushioning effect, especially at high impact velocities. The above analysis gives the results when the structural symmetry axis was vertical to the water(vertical impacts). In addition, the results were given when the axis was oblique to the water(oblique impacts). Compared with the vertical cases, the impact phenomena and structural response showed asymmetry. This work used the computational fluid dynamics(CFD) method to describe fluid motion and the finite element method(FEM) for the deformable structure. A two-way coupling approach was used to deal with the fluid-structure interaction in the elastic cases.展开更多
The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water ...The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water wave theory.Darcy’s law is adopted to represent energy dissipation in pores.It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop.In the analytic method,the eigenfunction expansion-matching method(EEMM)for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method.The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters,such as plate length,horizontal position,submerged depth and porosity.It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies,while solid plate has better damping effect at high frequencies.The optimal ratio of plate length to water depth is 0.25-0.375,and the optimal ratio of submerged depth to water depth is 0.09-0.181.展开更多
In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics(WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle(CDP)technique i...In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics(WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle(CDP)technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission.展开更多
Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by ut...Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by utilizing 22 wave probes mounted along the mid-stream of the flume. Based on the wave spectrum obtained using fast Fourier transform(FFT), the instability characteristics of the energy spectrum were reported in this paper. By analyzing the variation of total spectral energy, the total spectral energy after wave breaking was found to clearly decrease, and the loss value and ratio gradually increased and tended to stabilize with the enhancement of breaking severity for different spectral types. When wave breaking occurred, the energy loss was primarily in a high-frequency range of f/fp>1.0, and energy gain was primarily in a low-frequency range of f/fp<1.0. As the breaking severity increased, the energy gain-loss ratio decreased gradually, which demonstrates that the energy was mostly dissipated. For plunging waves, the energy gain-loss ratio reached 24% for the constant wave steepness(CWS) spectrum, and was slightly larger at approximately 30% for the constant wave amplitude(CWA) spectrum, and was the largest at approximately 42% for the Pierson-Moskowitz(PM) spectrum.展开更多
A new wave energy dissipation structure is proposed, aiming to optimize the dimensions of the structure and make the reflection of the structure maintain a low level within the scope of the known frequency band. An op...A new wave energy dissipation structure is proposed, aiming to optimize the dimensions of the structure and make the reflection of the structure maintain a low level within the scope of the known frequency band. An optimal extended ANFIS model combined with the wave reflection coefficient analysis for the estimation of the structure dimensions is established. In the premise of lower wave reflection coefficient, the specific sizes of the structure are obtained inversely, and the contribution of each related parameter on the structural reflection performance is analyzed. The main influencing factors are determined. It is found that the optimal dimensions of the proposed structure exist, which make the wave absorbing performance of the structure reach a perfect status under a wide wave frequency band.展开更多
A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into...A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.展开更多
Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to det...Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to determine the effects of mooring conditions on the hydroelastic response,mooring force,incident coefficient,reflection coefficient and energy dissipation coefficient.Eight mooring cables are symmetrically arranged on both sides of the model.The floating body model satisfies the similarity of stiffness and gravity,while the cable satisfies the similarity of elasticity and gravity.The results show that the effect of mooring type on mooring force is greater than that on hydroelastic response.Increasing the initial tension of the mooring cable will reduce the amplitude of the leeward of the VLFS model.The mooring angle of the mooring cable will affect the maximum mooring force and the initial tension of the mooring line will affect the wave period in which the maximum mooring force occurs.The transmission coefficient and wave energy dissipation coefficient will change regularly with different mooring types.These results may provide a reference to facilitate the mooring design of VLFS.展开更多
Study on the transport and mixing in coastal waters is of great concern to the ocean resources exploitation and ecological system protection.Lagrangian methods are direct and effective of researching mass transport.Tw...Study on the transport and mixing in coastal waters is of great concern to the ocean resources exploitation and ecological system protection.Lagrangian methods are direct and effective of researching mass transport.Two Lagrangian tools were adopted and combined to describe water transport in a long-narrow bay,Xiangshan Bay,China.Based on the fields of tidal velocity simulated from the 3-D hydrodynamic model,Lagrangian Coherent Structures(LCSs)and synoptic Lagrangian maps(SLMs)were calculated in the study area.Through comparison of the results,the features and relation of the two tools were discussed.The results show that the LCSs act as the separatrix of the water regions with different transport characteristics and can identify the water areas with different transport time scales.The comprehensive application of the Lagrangian tools is helpful to obtain more insight into the water transport process.展开更多
Numerical simulations of extreme wave generation are carried out by using the Volume Of Fluid(VOF) method.Extreme waves are generated based on wave focusing in a 2-D numerical model.To validate the capability of the...Numerical simulations of extreme wave generation are carried out by using the Volume Of Fluid(VOF) method.Extreme waves are generated based on wave focusing in a 2-D numerical model.To validate the capability of the VOF-based model described in this article,the propagation of regular waves is computed and compared with the theoretical results.By adjusting the phases of wave components,extreme waves are formed at given time and given position in the computation.The numerical results are compared with theoretical solutions and experimental data.It is concluded that the present model based on the VOF technique can provide acceptably accurate numerical results to serve practical purposes.展开更多
This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet p...This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.展开更多
A numerical model was established for simulating water wave dynamic problems by adopting the Smoothed Particle Hydrodynamics (SPH) methods of iterative solution of Poisson's equation for pressure field, and meanwhi...A numerical model was established for simulating water wave dynamic problems by adopting the Smoothed Particle Hydrodynamics (SPH) methods of iterative solution of Poisson's equation for pressure field, and meanwhile the sub-grid turbulence model was applied in the simulation so as to more accurately describe the turbulence characteristics at the time of wave breaking. In this article, simulation of the problem of the dam collapsing verifies the compoting accuracy of this method, and its results can be identical with the results of VOF method and the experimental results by comparison. Numerical simulations of the course of solitary wave and cnoidal wave run-up breaking on beaches were conducted, and the results are basically consistent with experimental results This indicates that the SPH method is effective for the numerical simulation of the complex problems of water wave dynamics.展开更多
Waves with the same wave parameters, such as significant wave height and period, but with different wave groupiness factors are simulated, to study the motion behavior of a moored ship under the action of waves with d...Waves with the same wave parameters, such as significant wave height and period, but with different wave groupiness factors are simulated, to study the motion behavior of a moored ship under the action of waves with different Groupiness Factors of Height (GFH) and Group Length Factors (GLF). The numerical results show that both the sway and heave motions increase with an increase in GFH. In contrast, the influence of GLF on the motions of a moored ship is weak.展开更多
基金financially supported by the National Key Research and Development Program of China (Grant No. 2019YFC1407700)。
文摘Recent damages to the box-like structures caused by wave slamming have made it necessary to study the impact problems of this kind of structure. This paper showed findings from numerical simulations of the rigid/elastic structures, aiming to gain insights into the characteristics of the problem. The results of the rigid cases showed the significance of air compressibility during the impact process, while the slamming phenomena became quite different without the effect. In the elastic cases, the trapped air made the structure vibrate at frequencies much smaller than its eigenfrequencies. Besides, the structural deformation made it easy for the trapped air to escape outwards, which weakened the air cushioning effect, especially at high impact velocities. The above analysis gives the results when the structural symmetry axis was vertical to the water(vertical impacts). In addition, the results were given when the axis was oblique to the water(oblique impacts). Compared with the vertical cases, the impact phenomena and structural response showed asymmetry. This work used the computational fluid dynamics(CFD) method to describe fluid motion and the finite element method(FEM) for the deformable structure. A two-way coupling approach was used to deal with the fluid-structure interaction in the elastic cases.
基金financially supported by the National Key R&D Program of China(Grant No.2019YFC1407700)the National Natural Science Foundation of China(Grant No.51779038)。
文摘The hydroelastic responses of a submerged horizontal solid/porous plate attached at the front of a very large rectangular floating structure(VLFS)under wave action has been investigated in the context of linear water wave theory.Darcy’s law is adopted to represent energy dissipation in pores.It is assumed that the porous plates are made of material with very fine pores so that the normal velocity across the perforated porous is linearly associated with the pressure drop.In the analytic method,the eigenfunction expansion-matching method(EEMM)for multiple domains is applied to solve the hydrodynamic problem and the elastic equation of motion is solved by the modal expansion method.The performance of the proposed submerged horizontal solid/porous plate can be significantly enhanced by selecting optimal design parameters,such as plate length,horizontal position,submerged depth and porosity.It is concluded that good damping effect can be achieved through installation of solid and porous plate.Porous plate has better damping effect at low frequencies,while solid plate has better damping effect at high frequencies.The optimal ratio of plate length to water depth is 0.25-0.375,and the optimal ratio of submerged depth to water depth is 0.09-0.181.
基金financially supported by the National Research and Development Program of China(Grant No.2016YFC1401405)the National Natural Science Foundation of China(Grant No.51779038)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201405025-1)
文摘In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics(WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle(CDP)technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission.
基金financially supported by the State Key Research and Development Program of China(Grant No.2016YFC1401405)the National Natural Science Foundation of China(Grant Nos.51779038 and 51279028)
文摘Based on phase focusing theory, focusing waves with different spectral types and breaking severities were generated in a wave flume. The time series of surface elevation fluctuation along the flume were obtained by utilizing 22 wave probes mounted along the mid-stream of the flume. Based on the wave spectrum obtained using fast Fourier transform(FFT), the instability characteristics of the energy spectrum were reported in this paper. By analyzing the variation of total spectral energy, the total spectral energy after wave breaking was found to clearly decrease, and the loss value and ratio gradually increased and tended to stabilize with the enhancement of breaking severity for different spectral types. When wave breaking occurred, the energy loss was primarily in a high-frequency range of f/fp>1.0, and energy gain was primarily in a low-frequency range of f/fp<1.0. As the breaking severity increased, the energy gain-loss ratio decreased gradually, which demonstrates that the energy was mostly dissipated. For plunging waves, the energy gain-loss ratio reached 24% for the constant wave steepness(CWS) spectrum, and was slightly larger at approximately 30% for the constant wave amplitude(CWA) spectrum, and was the largest at approximately 42% for the Pierson-Moskowitz(PM) spectrum.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279028)the Public Science and Technology Research Funds Projects of Ocean(Grant No.201405025-1)
文摘A new wave energy dissipation structure is proposed, aiming to optimize the dimensions of the structure and make the reflection of the structure maintain a low level within the scope of the known frequency band. An optimal extended ANFIS model combined with the wave reflection coefficient analysis for the estimation of the structure dimensions is established. In the premise of lower wave reflection coefficient, the specific sizes of the structure are obtained inversely, and the contribution of each related parameter on the structural reflection performance is analyzed. The main influencing factors are determined. It is found that the optimal dimensions of the proposed structure exist, which make the wave absorbing performance of the structure reach a perfect status under a wide wave frequency band.
基金supported by the State Ocean Administration People’s Republic of China(Grant No.201405025)the Key Laboratory for Sea Area Management Technology(SOA)(Grant No.201603)
文摘A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model.
基金financially supported by the National Key R&D Program of China (Grant Nos. 2019YFC1407702 and 2019YFC1407705)
文摘Mooring system is a significant part of very large offshore floating structures(VLFS).In this paper,a single module pontoon type VLFS model considering four mooring types is studied through physical model tests to determine the effects of mooring conditions on the hydroelastic response,mooring force,incident coefficient,reflection coefficient and energy dissipation coefficient.Eight mooring cables are symmetrically arranged on both sides of the model.The floating body model satisfies the similarity of stiffness and gravity,while the cable satisfies the similarity of elasticity and gravity.The results show that the effect of mooring type on mooring force is greater than that on hydroelastic response.Increasing the initial tension of the mooring cable will reduce the amplitude of the leeward of the VLFS model.The mooring angle of the mooring cable will affect the maximum mooring force and the initial tension of the mooring line will affect the wave period in which the maximum mooring force occurs.The transmission coefficient and wave energy dissipation coefficient will change regularly with different mooring types.These results may provide a reference to facilitate the mooring design of VLFS.
基金financially supported by the National Key R&D Program of China(Grant No.2016YFC0401909)the National Natural Science Foundation of China(Grant No.51609022)+3 种基金the Innovation Team Project of Estuary and Coast Protection and Management(Grant No.Y220013)the Fundamental Research Funds for the Central Public Welfare Research Institute(Grant No.CKSF2019434/SL)the Foundation from State Key Laboratory of Coastal and Offshore EngineeringDalian University of Technology(Grant No.LP1605)。
文摘Study on the transport and mixing in coastal waters is of great concern to the ocean resources exploitation and ecological system protection.Lagrangian methods are direct and effective of researching mass transport.Two Lagrangian tools were adopted and combined to describe water transport in a long-narrow bay,Xiangshan Bay,China.Based on the fields of tidal velocity simulated from the 3-D hydrodynamic model,Lagrangian Coherent Structures(LCSs)and synoptic Lagrangian maps(SLMs)were calculated in the study area.Through comparison of the results,the features and relation of the two tools were discussed.The results show that the LCSs act as the separatrix of the water regions with different transport characteristics and can identify the water areas with different transport time scales.The comprehensive application of the Lagrangian tools is helpful to obtain more insight into the water transport process.
基金support by the National Natural Science Foundation of China (Grant No. 50779004)
文摘Numerical simulations of extreme wave generation are carried out by using the Volume Of Fluid(VOF) method.Extreme waves are generated based on wave focusing in a 2-D numerical model.To validate the capability of the VOF-based model described in this article,the propagation of regular waves is computed and compared with the theoretical results.By adjusting the phases of wave components,extreme waves are formed at given time and given position in the computation.The numerical results are compared with theoretical solutions and experimental data.It is concluded that the present model based on the VOF technique can provide acceptably accurate numerical results to serve practical purposes.
基金supported by the National Natural Science Foundation of China (Grant No. 50779004)
文摘This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.
基金supported by the National High Techology Research and Development Program of China (863 Program,Grant No.2007AA11Z130)
文摘A numerical model was established for simulating water wave dynamic problems by adopting the Smoothed Particle Hydrodynamics (SPH) methods of iterative solution of Poisson's equation for pressure field, and meanwhile the sub-grid turbulence model was applied in the simulation so as to more accurately describe the turbulence characteristics at the time of wave breaking. In this article, simulation of the problem of the dam collapsing verifies the compoting accuracy of this method, and its results can be identical with the results of VOF method and the experimental results by comparison. Numerical simulations of the course of solitary wave and cnoidal wave run-up breaking on beaches were conducted, and the results are basically consistent with experimental results This indicates that the SPH method is effective for the numerical simulation of the complex problems of water wave dynamics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50921001)the Ministry of Communications of China (Grant No. 200632800003-01)
文摘Waves with the same wave parameters, such as significant wave height and period, but with different wave groupiness factors are simulated, to study the motion behavior of a moored ship under the action of waves with different Groupiness Factors of Height (GFH) and Group Length Factors (GLF). The numerical results show that both the sway and heave motions increase with an increase in GFH. In contrast, the influence of GLF on the motions of a moored ship is weak.