In recent years,there have been important developments in the joint analysis of the travel behavior based on discrete choice models as well as in the formulation of increasingly flexible closed-form models belonging t...In recent years,there have been important developments in the joint analysis of the travel behavior based on discrete choice models as well as in the formulation of increasingly flexible closed-form models belonging to the generalized extreme value class.The objective of this work is to describe the simultaneous choice of shopping destination and travel-to-shop mode in downtown area by making use of the cross-nested logit(CNL) structure that allows for potential spatial correlation.The analysis uses data collected in the downtown areas of Maryland-Washington,D.C.region for shopping trips,considering household,individual,land use,and travel-related characteristics.The estimation results show that the dissimilarity parameter in the CNL model is 0.37 and significant at the 95% level,indicating that the alternatives have high spatial correlation for the short shopping distance.The results of analysis reveal detailed significant influences on travel behavior of joint choice shopping destination and travel mode.Moreover,a Monte Carlo simulation for a group of scenarios arising from transportation policies and parking fees in downtown area,was undertaken to examine the impact of a change in car travel cost on the shopping destination and travel mode switching.These findings have important implications for transportation demand management and urban planning.展开更多
The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of ...The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of the people living in the same area.With two indicators, accessibility and connectivity measured at the zone level, the regional transit service is captured and then related to the travel mode choice behavior. The sample data are selected from Washington-Baltimore Household Travel Survey in 2007,including all the trips from home to workplace in morning hours in Baltimore city. Traditional multinomial logit model using Bayesian approach is also estimated. A comparison of the two different models shows that ignoring the spatial context can lead to a misspecification of the effects of the regional transit service on travel behavior. The results reveal that improving transit service at regional level can be effective in reducing auto use for commuters after controlling for socio-demographics and travel-related factors.This work provides insights for interpreting tour-based commuter travel behavior by using recently developed methodological approaches. The results of this work will be helpful for engineers, urban planners, and transit operators to decide the needs to improve regional transit service and spatial location efficiently.展开更多
基金Projects(JCYJ20120615145601342,JCYJ20130325151523015)supported by Shenzhen Science and Technology Development Funding-Fundamental Research Plan,ChinaProject(2013U-6)supported by Key Laboratory of Eco Planning & Green Building,Ministry of Education(Tsinghua University),China
文摘In recent years,there have been important developments in the joint analysis of the travel behavior based on discrete choice models as well as in the formulation of increasingly flexible closed-form models belonging to the generalized extreme value class.The objective of this work is to describe the simultaneous choice of shopping destination and travel-to-shop mode in downtown area by making use of the cross-nested logit(CNL) structure that allows for potential spatial correlation.The analysis uses data collected in the downtown areas of Maryland-Washington,D.C.region for shopping trips,considering household,individual,land use,and travel-related characteristics.The estimation results show that the dissimilarity parameter in the CNL model is 0.37 and significant at the 95% level,indicating that the alternatives have high spatial correlation for the short shopping distance.The results of analysis reveal detailed significant influences on travel behavior of joint choice shopping destination and travel mode.Moreover,a Monte Carlo simulation for a group of scenarios arising from transportation policies and parking fees in downtown area,was undertaken to examine the impact of a change in car travel cost on the shopping destination and travel mode switching.These findings have important implications for transportation demand management and urban planning.
基金Project(71173061)supported by the National Natural Science Foundation of ChinaProject(2013U-6)supported by Key Laboratory of Eco Planning & Green Building,Ministry of Education(Tsinghua University),China
文摘The aim of this work is to explore the impact of regional transit service on tour-based commuter travel behavior by using the Bayesian hierarchical multinomial logit model, accounting for the spatial heterogeneity of the people living in the same area.With two indicators, accessibility and connectivity measured at the zone level, the regional transit service is captured and then related to the travel mode choice behavior. The sample data are selected from Washington-Baltimore Household Travel Survey in 2007,including all the trips from home to workplace in morning hours in Baltimore city. Traditional multinomial logit model using Bayesian approach is also estimated. A comparison of the two different models shows that ignoring the spatial context can lead to a misspecification of the effects of the regional transit service on travel behavior. The results reveal that improving transit service at regional level can be effective in reducing auto use for commuters after controlling for socio-demographics and travel-related factors.This work provides insights for interpreting tour-based commuter travel behavior by using recently developed methodological approaches. The results of this work will be helpful for engineers, urban planners, and transit operators to decide the needs to improve regional transit service and spatial location efficiently.