Purpose:The goal of this study is a comparative analysis of the relation between funding(a main driver for scientific research)and citations in papers of Nobel Laureates in physics,chemistry and medicine over 2019-202...Purpose:The goal of this study is a comparative analysis of the relation between funding(a main driver for scientific research)and citations in papers of Nobel Laureates in physics,chemistry and medicine over 2019-2020 and the same relation in these research fields as a whole.Design/methodology/approach:This study utilizes a power law model to explore the relationship between research funding and citations of related papers.The study here analyzes 3,539 recorded documents by Nobel Laureates in physics,chemistry and medicine and a broader dataset of 183,016 documents related to the fields of physics,medicine,and chemistry recorded in the Web of Science database.Findings:Results reveal that in chemistry and medicine,funded researches published in papers of Nobel Laureates have higher citations than unfunded studies published in articles;vice versa high citations of Nobel Laureates in physics are for unfunded studies published in papers.Instead,when overall data of publications and citations in physics,chemistry and medicine are analyzed,all papers based on funded researches show higher citations than unfunded ones.Originality/value:Results clarify the driving role of research funding for science diffusion that are systematized in general properties:a)articles concerning funded researches receive more citations than(un)funded studies published in papers of physics,chemistry and medicine sciences,generating a high Matthew effect(a higher growth of citations with the increase in the number of papers);b)research funding increases the citations of articles in fields oriented to applied research(e.g.,chemistry and medicine)more than fields oriented towards basic research(e.g.,physics).Practical implications:The results here explain some characteristics of scientific development and diffusion,highlighting the critical role of research funding in fostering citations and the expansion of scientific knowledge.This finding can support decision-making of policymakers and R&D managers to improve the effectiveness in allocating financial resources in science policies to generate a higher positive scientific and societal impact.展开更多
Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relati...Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.展开更多
文摘Purpose:The goal of this study is a comparative analysis of the relation between funding(a main driver for scientific research)and citations in papers of Nobel Laureates in physics,chemistry and medicine over 2019-2020 and the same relation in these research fields as a whole.Design/methodology/approach:This study utilizes a power law model to explore the relationship between research funding and citations of related papers.The study here analyzes 3,539 recorded documents by Nobel Laureates in physics,chemistry and medicine and a broader dataset of 183,016 documents related to the fields of physics,medicine,and chemistry recorded in the Web of Science database.Findings:Results reveal that in chemistry and medicine,funded researches published in papers of Nobel Laureates have higher citations than unfunded studies published in articles;vice versa high citations of Nobel Laureates in physics are for unfunded studies published in papers.Instead,when overall data of publications and citations in physics,chemistry and medicine are analyzed,all papers based on funded researches show higher citations than unfunded ones.Originality/value:Results clarify the driving role of research funding for science diffusion that are systematized in general properties:a)articles concerning funded researches receive more citations than(un)funded studies published in papers of physics,chemistry and medicine sciences,generating a high Matthew effect(a higher growth of citations with the increase in the number of papers);b)research funding increases the citations of articles in fields oriented to applied research(e.g.,chemistry and medicine)more than fields oriented towards basic research(e.g.,physics).Practical implications:The results here explain some characteristics of scientific development and diffusion,highlighting the critical role of research funding in fostering citations and the expansion of scientific knowledge.This finding can support decision-making of policymakers and R&D managers to improve the effectiveness in allocating financial resources in science policies to generate a higher positive scientific and societal impact.
文摘Purpose:The goal of this study is to analyze the relationship between funded and unfunded papers and their citations in both basic and applied sciences.Design/methodology/approach:A power law model analyzes the relationship between research funding and citations of papers using 831,337 documents recorded in the Web of Science database.Findings:The original results reveal general characteristics of the diffusion of science in research fields:a)Funded articles receive higher citations compared to unfunded papers in journals;b)Funded articles exhibit a super-linear growth in citations,surpassing the increase seen in unfunded articles.This finding reveals a higher diffusion of scientific knowledge in funded articles.Moreover,c)funded articles in both basic and applied sciences demonstrate a similar expected change in citations,equivalent to about 1.23%,when the number of funded papers increases by 1%in journals.This result suggests,for the first time,that funding effect of scientific research is an invariant driver,irrespective of the nature of the basic or applied sciences.Originality/value:This evidence suggests empirical laws of funding for scientific citations that explain the importance of robust funding mechanisms for achieving impactful research outcomes in science and society.These findings here also highlight that funding for scientific research is a critical driving force in supporting citations and the dissemination of scientific knowledge in recorded documents in both basic and applied sciences.Practical implications:This comprehensive result provides a holistic view of the relationship between funding and citation performance in science to guide policymakers and R&D managers with science policies by directing funding to research in promoting the scientific development and higher diffusion of results for the progress of human society.