The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical ...The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.展开更多
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.