Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was com...Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%-16.64%) than daytime (12.74%-14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%-31.07%) and smallest in summer (4.46%-6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.展开更多
This study presents detailed analysis of spatiotemporal variations and trend of dust optical properties i.e., Aerosol Optical Depth(AOD) and Angstrom component over Asian desert regions using thirteen years of data(i....This study presents detailed analysis of spatiotemporal variations and trend of dust optical properties i.e., Aerosol Optical Depth(AOD) and Angstrom component over Asian desert regions using thirteen years of data(i.e., 2001–2013) retrieved from Aerosol Robotic Network(AERONET), Moderate Resolution Imaging Spectroradiometer(MODIS) and Multi-angle Imaging Spectroradiometer(MISR). These regions include Solar Village, Dunhuang and Dalangzadgad and are considered as origin of desert aerosols in Asia. Mann–Kendall trend test was used to show the trend of AOD. The relationship of AOD with weather parameters and general AOD trend over different wavelengths has also been shown. AOD's trend has been observed significant throughout the year in Solar Village, while in Dunhuang and Dalanzadgad the significant trend has been found only in peak period(March–June).Analysis show high values of AOD and low values of angstrom in Solar Village during peak period. In Chinese desert regions, high values of AOD have been found during peak period and low values in pre-peak period. Significant relationship has been observed between AOD and average temperature in Solar Village and Dalanzadgad whereas rainfall and wind speed showed no significant impact on AOD in all desert regions.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41590874 and 41590875)the Ministry of Science and Technology of China (Grant No. 2014CB953703)
文摘Satellite and human visual observation are two of the most important observation approaches for cloud cover. In this study, the total cloud cover (TCC) observed by MODIS onboard the Terra and Aqua satellites was compared with Synop meteorological station observations over the North China Plain and its surrounding regions for 11 years during daytime and 7 years during nighttime. The Synop data were recorded eight times a day at 3-h intervals. Linear interpolation was used to interpolate the Synop data to the MODIS overpass time in order to reduce the temporal deviation between the satellite and Synop observations. Results showed that MODIS-derived TCC had good consistency with the Synop observations; the correlation coefficients ranged from 0.56 in winter to 0.73 in summer for Terra MODIS, and from 0.55 in winter to 0.71 in summer for Aqua MODIS. However, they also had certain differences. On average, the MODIS-derived TCC was 15.16% higher than the Synop data, and this value was higher at nighttime (15.58%-16.64%) than daytime (12.74%-14.14%). The deviation between the MODIS and Synop TCC had large seasonal variation, being largest in winter (29.53%-31.07%) and smallest in summer (4.46%-6.07%). Analysis indicated that cloud with low cloud-top height and small cloud optical thickness was more likely to cause observation bias. Besides, an increase in the satellite view zenith angle, aerosol optical depth, or snow cover could lead to positively biased MODIS results, and this affect differed among different cloud types.
基金supported by the National Natural Science Foundations of China (Nos.41475136 and 41590871)International Science & Technology Cooperation Program of China (No.2013DFG22820)
文摘This study presents detailed analysis of spatiotemporal variations and trend of dust optical properties i.e., Aerosol Optical Depth(AOD) and Angstrom component over Asian desert regions using thirteen years of data(i.e., 2001–2013) retrieved from Aerosol Robotic Network(AERONET), Moderate Resolution Imaging Spectroradiometer(MODIS) and Multi-angle Imaging Spectroradiometer(MISR). These regions include Solar Village, Dunhuang and Dalangzadgad and are considered as origin of desert aerosols in Asia. Mann–Kendall trend test was used to show the trend of AOD. The relationship of AOD with weather parameters and general AOD trend over different wavelengths has also been shown. AOD's trend has been observed significant throughout the year in Solar Village, while in Dunhuang and Dalanzadgad the significant trend has been found only in peak period(March–June).Analysis show high values of AOD and low values of angstrom in Solar Village during peak period. In Chinese desert regions, high values of AOD have been found during peak period and low values in pre-peak period. Significant relationship has been observed between AOD and average temperature in Solar Village and Dalanzadgad whereas rainfall and wind speed showed no significant impact on AOD in all desert regions.