期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solution of a One-Dimension Heat Equation Using Higher-Order Finite Difference Methods and Their Stability
1
作者 M. Emran Ali Wahida Zaman Loskor +1 位作者 samia taher Farjana Bilkis 《Journal of Applied Mathematics and Physics》 2022年第3期877-886,共10页
One-dimensional heat equation was solved for different higher-order finite difference schemes, namely, forward time and fourth-order centered space explicit method, backward time and fourth-order centered space implic... One-dimensional heat equation was solved for different higher-order finite difference schemes, namely, forward time and fourth-order centered space explicit method, backward time and fourth-order centered space implicit method, and fourth-order implicit Crank-Nicolson finite difference method. Higher-order schemes have complexity in computing values at the neighboring points to the boundaries. It is required there a specification of the values of field variables at some points exterior to the domain. The complexity was incorporated using Hicks approximation. The convergence and stability analysis was also computed for those higher-order finite difference explicit and implicit methods in case of solving a one dimensional heat equation. The obtained numerical results were compared with exact solutions. It is found that backward time and fourth-order centered space implicit scheme along with Hicks approximation performed well over the other mentioned higher-order approaches. 展开更多
关键词 Heat Equation Boundary Condition Higher-Order Finite Difference Methods Hicks Approximation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部