In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a...In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps. Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper. In fact, features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue. We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent.展开更多
In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be t...In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be transmitted over the network. Instead of direct embedding a message or image within the source image, choosing a window of size 2 x 2 of the source image in sliding window manner and then con-vert it from spatial domain to frequency domain using Discrete Fourier Transform (DFT). The bits of the authenticating message or image are then embedded at LSB within the real part of the transformed image. Inverse DFT is performed for the transformation from frequency domain to spatial domain as final step of encoding. Decoding is done through the reverse procedure. The experimental results have been discussed and compared with the existing steganography algorithm S-Tools. Histogram analysis and Chi-Square test of source image with embedded image shows the better results in comparison with the S-Tools.展开更多
Automated segmentation of white matter (WM) and gray matter (GM) is a very important task for detecting multiple diseases. The paper proposed a simple method for WM and GM extraction form magnetic resonance imaging (M...Automated segmentation of white matter (WM) and gray matter (GM) is a very important task for detecting multiple diseases. The paper proposed a simple method for WM and GM extraction form magnetic resonance imaging (MRI) of brain. The proposed methods based on binarization, wavelet decomposition, and convexhull produce very effective results in the context of visual inspection and as well as quantifiably. It tested on three different (Transvers, Sagittal, Coronal) types of MRI of brain image and the validation of experiment indicate accurate detection and segmentation of the interesting structures or particular region of MRI of brain image.展开更多
This paper propose a computerized method of magnetic resonance imaging (MR/) of brain binarization for the uses of preprocessing of features extraction and brain ab- normality identification. One of the main problem...This paper propose a computerized method of magnetic resonance imaging (MR/) of brain binarization for the uses of preprocessing of features extraction and brain ab- normality identification. One of the main problems of MR/ binarization is that many pixels of brain part cannot be cor- rectly binarized due to extensive black background or large variation in contrast between background and foreground of MR/. We have proposed a binarization that uses mean, vari- ance, standard deviation and entropy to determine a thresh- old value followed by a non-gamut enhancement which can overcome the binarization problem of brain component. The proposed binarization technique is extensively tested with a variety of MR/and generates good binarization with im- proved accuracy and reduced error. A comparison is carried out among the obtained outcome with this innovative method with respect to other well-known methods.展开更多
文摘In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps. Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper. In fact, features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue. We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent.
文摘In this paper a novel technique, Authentication and Secret Message Transmission using Discrete Fourier Transformation (ASMTDFT) has been proposed to authenticate an image and also some secret message or image can be transmitted over the network. Instead of direct embedding a message or image within the source image, choosing a window of size 2 x 2 of the source image in sliding window manner and then con-vert it from spatial domain to frequency domain using Discrete Fourier Transform (DFT). The bits of the authenticating message or image are then embedded at LSB within the real part of the transformed image. Inverse DFT is performed for the transformation from frequency domain to spatial domain as final step of encoding. Decoding is done through the reverse procedure. The experimental results have been discussed and compared with the existing steganography algorithm S-Tools. Histogram analysis and Chi-Square test of source image with embedded image shows the better results in comparison with the S-Tools.
文摘Automated segmentation of white matter (WM) and gray matter (GM) is a very important task for detecting multiple diseases. The paper proposed a simple method for WM and GM extraction form magnetic resonance imaging (MRI) of brain. The proposed methods based on binarization, wavelet decomposition, and convexhull produce very effective results in the context of visual inspection and as well as quantifiably. It tested on three different (Transvers, Sagittal, Coronal) types of MRI of brain image and the validation of experiment indicate accurate detection and segmentation of the interesting structures or particular region of MRI of brain image.
文摘This paper propose a computerized method of magnetic resonance imaging (MR/) of brain binarization for the uses of preprocessing of features extraction and brain ab- normality identification. One of the main problems of MR/ binarization is that many pixels of brain part cannot be cor- rectly binarized due to extensive black background or large variation in contrast between background and foreground of MR/. We have proposed a binarization that uses mean, vari- ance, standard deviation and entropy to determine a thresh- old value followed by a non-gamut enhancement which can overcome the binarization problem of brain component. The proposed binarization technique is extensively tested with a variety of MR/and generates good binarization with im- proved accuracy and reduced error. A comparison is carried out among the obtained outcome with this innovative method with respect to other well-known methods.