期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Thermal Decomposition Behavior and Kinetic Study of Jamadoba Coal and Its Density Separated Macerals: A Non-Isothermal Approach 被引量:1
1
作者 Deepak Chandra Sau Amit Banerjee +3 位作者 sanchita chakravarty Pragyan Senapati Rabiranjan Murmu Harekrushna Sutar 《Advances in Chemical Engineering and Science》 2021年第3期203-227,共25页
This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior a... This kinetic study focuses on determining the thermal gravimetric profile of a particular grade of Indian sub-bituminous coal. A thermogravimetric analyzer (TGA-1000) was employed to investigate the thermal behavior and extract the kinetic parameters of Jamadoba coal and its corresponding density sepa<span style="font-family:Verdana;color:#000000;">rated macerals. The weight loss was measured in air atmosphere. The coal </span><span style="font-family:Verdana;color:#000000;">samples used in this study were obtained from Jamadoba mines, Jharkhand. Sam</span><span style="font-family:Verdana;color:#000000;">ples of 35 mg and 200 μm mean size were subjected to synthetic air atmos</span><span style="font-family:Verdana;color:#000000;">pheres (21% O</span><sub><span style="font-family:Verdana;color:#000000;">2</span></sub><span style="font-family:Verdana;color:#000000;">). Heating rates of 2, 5 and 7</span><span style="font-family:;" "=""><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;"></span><span><span style="font-family:Verdana;color:#000000;">C/min were applied until the tempera</span><span style="font-family:Verdana;color:#000000;">ture reached 1400</span></span><span><span style="color:#000000;font-family:Verdana;">°</span><span style="font-family:Verdana;color:#000000;">C, which was kept constant until burnout. Low heating</span></span><span><span style="font-family:Verdana;color:#000000;"> rate was preferred so that devolatilization occurs prior to ignition and </span><span style="font-family:Verdana;color:#000000;">combust</span><span style="font-family:Verdana;color:#000000;">ion. Derivative thermogravimetry (DTG) analysis method was applied to </span><span style="font-family:Verdana;color:#000000;">measure the weight changes and rates of weight loss used for calculating the kinetic parameters. The activation energy (</span><i><span style="font-family:Verdana;color:#000000;">E</span><sub><span style="font-family:Verdana;color:#000000;">a</span></sub></i><span style="font-family:Verdana;color:#000000;">) and pre-exponential factor were obtained </span><span style="font-family:Verdana;color:#000000;">from model-free methods by applying non-isothermal thermogravimetry</span><span style="font-family:Verdana;color:#000000;"> analysis.</span></span></span> 展开更多
关键词 Thermal Decomposition Kinetic Study Jamadoba Coal NON-ISOTHERMAL
下载PDF
Changes in organic structure and mineral phases transformation of coal during heat treatment on laboratory scale 被引量:8
2
作者 Vivek Mishra Mamta Sharma +1 位作者 sanchita chakravarty Amit Banerjee 《International Journal of Coal Science & Technology》 EI 2016年第4期418-428,共11页
Structural changes due to coalification and oxidation influence the coal quality, geochemically and petrologically. Understanding of the coal structures helps to predict the behaviour of coal at various processes. The... Structural changes due to coalification and oxidation influence the coal quality, geochemically and petrologically. Understanding of the coal structures helps to predict the behaviour of coal at various processes. The objective of this paper is to study the changes in organic structure and mineral phase transformation during combustion. Different density fractions were generated and then heated at different temperatures from 200 to 1000 ℃. Petrography, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were carried out on all the density fractions aimed to accomplish this objective. Here, through petrography, it was observed that the vitrinite and liptinite macerals disappear at higher temperature while porous inertinite is seen. The inertinite structure is exposed which is assumed by the presence of -OH and C-O-C stretches with the aromatic nucleus (CH) and three to four adjacent H from FTIR spectra. Moreover, it can be concluded that aliphatic groups get collapsed at high temperature. In case of inorganic matter, through XRD and FTIR, it is also revealed that with increasing temperature, clay minerals converted into elemental oxides. Hence, this study is suggesting that the structures of coal are altered by the degree of contact metamorphism. 展开更多
关键词 COAL Heat treatment Oxidation PETROGRAPHY FTIR XRD
下载PDF
Physico-chemical and elemental investigation of aqueous leaching of high sulfur coal and mine overburden from Ledo coalfield of Northeast India 被引量:5
3
作者 Madhulika Dutta Puja Khare +2 位作者 sanchita chakravarty Durlov Saikia Binoy K. Saikia 《International Journal of Coal Science & Technology》 EI 2018年第3期265-281,共17页
Acid mine drainage (AMD) is one of the major problems in high sulfur coal mining areas generating acidic water. The acidic mine water generated contain hazardous elements in varying concentrations. The Northeastern ... Acid mine drainage (AMD) is one of the major problems in high sulfur coal mining areas generating acidic water. The acidic mine water generated contain hazardous elements in varying concentrations. The Northeastern Indian coalfield produces considerable amounts of AMD. The AMD and metal leaching from coal and mine over burden (OB) are the two important naturally occurring processes. In order to know the AMD potential, the aqueous leaching experiment of a few coal and OB samples from the Ledo colliery of the Northeastern coalfield, Mergherita (India), at different time periods (1, 3, 5, and 8 h) and at different temperatures (25, 45, 65, and 90℃) were performed in the laboratory. The physico- chemical analysis of the aqueous leachates shows the pH, electrical conductivity (EC), and total dissolved solid (TDS) in the range of 1.62-3.52, 106-2006 μs/cm, and 106-1003 ppm for the raw coal samples respectively. The OB samples produced pH, EC, and TDS in the range of 3.68-6.92, 48.6-480 μs/cm, and 69.5-240 ppm respectively. From the study, it was revealed that the concentrations of major (Si, A1, K, Na, Fe, Ca, Mg), minor (Mn) and trace/hazardous elements (As, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, Zn) considerably change with leaching time as well as with leaching temperature. Out of these elements As, Cd, Hg, Pb, Cr, and Se are of greater environmental importance. Alteration of the physico-chemical structure of the coal and OB samples resulting from leaching was also studied by field emission scanning electron microscope- energy-dispersive X-ray spectroscopy method. The release of the potentially hazardous elements from the raw coal and OB during leaching time periods to the leachates was detected by inductively coupled plasma-atomic emission spectroscopy and ion-chromatographic analyses. The major minerals found in coal and OB are quartz (SiO2), pyrite (FeS2), hematite, marcasite, and kaolinite. The association of different functional groups in minerals and their mode of association were studied by Fourier-transform infrared spectroscopy and X-ray diffraction analytical techniques. The present laboratory study will be useful in relating the characteristics of aqueous leaching from coal and mine OB with the natural weathering condition at the coal mine area. 展开更多
关键词 AMD High sulfur coal Coal mine overburden Aqueous leaching Elements in coal and OB Coal qualityassessment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部