Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to ...Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.展开更多
Potentially temperature-resistant inorganic perovskite/silicon tandem solar cells(TSCs)are promising devices for boosting efficiency past the single-junction silicon limit.However,undesirable non-radiative recombinati...Potentially temperature-resistant inorganic perovskite/silicon tandem solar cells(TSCs)are promising devices for boosting efficiency past the single-junction silicon limit.However,undesirable non-radiative recombination generally leads to a significant voltage deficit.Here,we introduce an effective strategy using nickel iodide,an inorganic halide salt,to passivate iodine vacancies and suppress non-radiative recombination.NiI_(2)-treated CsPbI_(3-x)Br_(x) inor-ganic perovskite solar cells with a 1.80 eV bandgap exhibited an efficiency of 19.53%and a voltage of 1.36 V,corresponding to a voltage deficit of 0.44 V.Importantly,the treated device demonstrated excellent operational stability,maintaining 95.7%of its initial efficiency after maximum power point tracking for 300 h under continuous illumination in a N_(2) atmosphere.By combining this inorganic perovskite top cell with a narrower bandgap silicon bottom cell,we for the first time achieved monolithic inorganic perovskite/silicon TSCs,which exhibited an effi-ciency of 22.95%with an open-circuit voltage of 2.04 V.This work provides a promising strategy for using inorganic passivation materials to achieve efficient and stable solar cells.展开更多
基金the financial support of National Key Research and Development Program of China(Grant No.2023YFB4202503)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21A2072)+7 种基金Natural Science Foundation of China(Grant No.62274099)Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Science Foundation(No.2020T130317)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)Key R&D Program of Hebei Province(No.19214301D)provided by the Haihe Laboratory of Sustainable Chemical Transformationsthe Fundamental Research Funds for the Central Universities,Nankai University.
文摘Monolithic textured perovskite/silicon tandem solar cells(TSCs)are expected to achieve maximum light capture at the lowest cost,potentially exhibiting the best power conversion efficiency.However,it is challenging to fabricate high-quality perovskite films and preferred crystal orientation on commercially textured silicon substrates with micrometersize pyramids.Here,we introduced a bulky organic molecule(4-fluorobenzylamine hydroiodide(F-PMAI))as a perovskite additive.It is found that F-PMAI can retard the crystallization process of perovskite film through hydrogen bond interaction between F^(−)and FA^(+)and reduce(111)facet surface energy due to enhanced adsorption energy of F-PMAI on the(111)facet.Besides,the bulky molecular is extruded to the bottom and top of perovskite film after crystal growth,which can passivate interface defects through strong interaction between F-PMA+and undercoordinated Pb^(2+)/I^(−).As a result,the additive facilitates the formation of large perovskite grains and(111)preferred orientation with a reduced trap-state density,thereby promoting charge carrier transportation,and enhancing device performance and stability.The perovskite/silicon TSCs achieved a champion efficiency of 30.05%based on a silicon thin film tunneling junction.In addition,the devices exhibit excellent longterm thermal and light stability without encapsulation.This work provides an effective strategy for achieving efficient and stable TSCs.
基金support of National Key Research and Development Program of China(Grant No.2018YFB1500103)the Joint Funds of the National Natural Science Foundation of China(Grant No.U21A2072)+6 种基金the National Natural Scicence Foundation of China(Grant No.62104115)the Natural Science Foundation of Tianjin(No.20JCQNJC02070)China Postdoctoral Science Foundation(No.2020T130317)the Overseas Expertise Introduction Project for Discipline Innovation of Higher Education of China(Grant No.B16027)Tianjin Science and Technology Project(Grant No.18ZXJMTG00220)Key R&D Program of Hebei Province(No.19214301D)Financial support was provided by the Haihe Laboratory of Sustainable Chemical Transformations,and the Fundamental Research Funds for the Central Universities,Nankai University。
文摘Potentially temperature-resistant inorganic perovskite/silicon tandem solar cells(TSCs)are promising devices for boosting efficiency past the single-junction silicon limit.However,undesirable non-radiative recombination generally leads to a significant voltage deficit.Here,we introduce an effective strategy using nickel iodide,an inorganic halide salt,to passivate iodine vacancies and suppress non-radiative recombination.NiI_(2)-treated CsPbI_(3-x)Br_(x) inor-ganic perovskite solar cells with a 1.80 eV bandgap exhibited an efficiency of 19.53%and a voltage of 1.36 V,corresponding to a voltage deficit of 0.44 V.Importantly,the treated device demonstrated excellent operational stability,maintaining 95.7%of its initial efficiency after maximum power point tracking for 300 h under continuous illumination in a N_(2) atmosphere.By combining this inorganic perovskite top cell with a narrower bandgap silicon bottom cell,we for the first time achieved monolithic inorganic perovskite/silicon TSCs,which exhibited an effi-ciency of 22.95%with an open-circuit voltage of 2.04 V.This work provides a promising strategy for using inorganic passivation materials to achieve efficient and stable solar cells.