Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)an...Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.展开更多
Gut microbiome(GM)is closely related to the overall health status for the human being.The dysfunction of microbiome can lead to many diseases such as inflammation,cancer and neurodegenerative disease.Therefore,it'...Gut microbiome(GM)is closely related to the overall health status for the human being.The dysfunction of microbiome can lead to many diseases such as inflammation,cancer and neurodegenerative disease.Therefore,it's of great importance to develop effective strategy to regulate GM.Gut lumen-targeted oral delivery system(GLT-ODS)has been extensively investigated and widely used in food science and engineering in these years,due to the targeted delivery property,controlled release profile,high biocompatibility and enhanced bioavailability of cargos.Herein,we comprehensively summarized the current advances in GLT-ODS for bioactive agent.Specifically,we systematically summarize the GLT-ODS for pre-agents(prebiotics and probiotics)and anti-agents(antibiotics and bacteriophages)according to the type of cargos.Through in-depth discussion of representative researches,we refined the limitations of existing research in carrier material and target selection,and drew a blueprint for the future technological research and development.We believe that GLT-ODS will become a safe,efficient,simple and precise GM management strategy for improvement of health and shine in the development of precision food and pharmaceutical engineering in future.展开更多
基金supported by the National Natural Science Foundation of China(22278241)the National Key R&D Program of China(2018YFA0901700)+1 种基金a grant from the Institute Guo Qiang,Tsinghua University(2021GQG1016)Department of Chemical Engineering-iBHE Joint Cooperation Fund.
文摘Early non-invasive diagnosis of coronary heart disease(CHD)is critical.However,it is challenging to achieve accurate CHD diagnosis via detecting breath.In this work,heterostructured complexes of black phosphorus(BP)and two-dimensional carbide and nitride(MXene)with high gas sensitivity and photo responsiveness were formulated using a self-assembly strategy.A light-activated virtual sensor array(LAVSA)based on BP/Ti_(3)C_(2)Tx was prepared under photomodulation and further assembled into an instant gas sensing platform(IGSP).In addition,a machine learning(ML)algorithm was introduced to help the IGSP detect and recognize the signals of breath samples to diagnose CHD.Due to the synergistic effect of BP and Ti_(3)C_(2)Tx as well as photo excitation,the synthesized heterostructured complexes exhibited higher performance than pristine Ti_(3)C_(2)Tx,with a response value 26%higher than that of pristine Ti_(3)C_(2)Tx.In addition,with the help of a pattern recognition algorithm,LAVSA successfully detected and identified 15 odor molecules affiliated with alcohols,ketones,aldehydes,esters,and acids.Meanwhile,with the assistance of ML,the IGSP achieved 69.2%accuracy in detecting the breath odor of 45 volunteers from healthy people and CHD patients.In conclusion,an immediate,low-cost,and accurate prototype was designed and fabricated for the noninvasive diagnosis of CHD,which provided a generalized solution for diagnosing other diseases and other more complex application scenarios.
基金This work was financially supported by the Scientific Research Start-up Funds(QD2021020C)at Shenzhen International Graduate School at Tsinghua University,the Research Fund Program of Guangdong Provincial Key Lab of Green Chemical Product Technology(20212779)Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022).
文摘Gut microbiome(GM)is closely related to the overall health status for the human being.The dysfunction of microbiome can lead to many diseases such as inflammation,cancer and neurodegenerative disease.Therefore,it's of great importance to develop effective strategy to regulate GM.Gut lumen-targeted oral delivery system(GLT-ODS)has been extensively investigated and widely used in food science and engineering in these years,due to the targeted delivery property,controlled release profile,high biocompatibility and enhanced bioavailability of cargos.Herein,we comprehensively summarized the current advances in GLT-ODS for bioactive agent.Specifically,we systematically summarize the GLT-ODS for pre-agents(prebiotics and probiotics)and anti-agents(antibiotics and bacteriophages)according to the type of cargos.Through in-depth discussion of representative researches,we refined the limitations of existing research in carrier material and target selection,and drew a blueprint for the future technological research and development.We believe that GLT-ODS will become a safe,efficient,simple and precise GM management strategy for improvement of health and shine in the development of precision food and pharmaceutical engineering in future.