Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentad...Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentadvancements in deep learning(DL)offer powerful tools to address this challenge.Aim:Thus,this study proposeda hybrid CNNBDLSTM,a combination of a convolutional neural network(CNN)with a bi-directional long shorttermmemory(BDLSTM)model to predict sepsis onset.Implementing the proposed model provides a robustframework that capitalizes on the complementary strengths of both architectures,resulting in more accurate andtimelier predictions.Method:The sepsis prediction method proposed here utilizes temporal feature extraction todelineate six distinct time frames before the onset of sepsis.These time frames adhere to the sepsis-3 standardrequirement,which incorporates 12-h observation windows preceding sepsis onset.All models were trained usingthe Medical Information Mart for Intensive Care III(MIMIC-III)dataset,which sourced 61,522 patients with 40clinical variables obtained from the IoT medical environment.The confusion matrix,the area under the receiveroperating characteristic curve(AUCROC)curve,the accuracy,the precision,the F1-score,and the recall weredeployed to evaluate themodels.Result:The CNNBDLSTMmodel demonstrated superior performance comparedto the benchmark and other models,achieving an AUCROC of 99.74%and an accuracy of 99.15%one hour beforesepsis onset.These results indicate that the CNNBDLSTM model is highly effective in predicting sepsis onset,particularly within a close proximity of one hour.Implication:The results could assist practitioners in increasingthe potential survival of the patient one hour before sepsis onset.展开更多
The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiment...The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiments based on household income loss,as expressed on social media.However,limited research has been conducted in this domain using theLexDeep approach.This study aimed to explore social trend analytics usingLexDeep,which is a hybrid sentiment analysis technique,on Twitter to capturethe risk of household income loss during the COVID-19 pandemic.First,tweet data were collected using Twint with relevant keywords before(9 March2019 to 17 March 2020)and during(18 March 2020 to 21 August 2021)thepandemic.Subsequently,the tweets were annotated using VADER(lexiconbased)and fed into deep learning classifiers,and experiments were conductedusing several embeddings,namely simple embedding,Global Vectors,andWord2Vec,to classify the sentiments expressed in the tweets.The performanceof each LexDeep model was evaluated and compared with that of a supportvector machine(SVM).Finally,the unemployment rates before and duringCOVID-19 were analysed to gain insights into the differences in unemploymentpercentages through social media input and analysis.The resultsdemonstrated that all LexDeep models with simple embedding outperformedthe SVM.This confirmed the superiority of the proposed LexDeep modelover a classical machine learning classifier in performing sentiment analysistasks for domain-specific sentiments.In terms of the risk of income loss,the unemployment issue is highly politicised on both the regional and globalscales;thus,if a country cannot combat this issue,the global economy will alsobe affected.Future research should develop a utility maximisation algorithmfor household welfare evaluation,given the percentage risk of income lossowing to COVID-19.展开更多
Developing successful software with no defects is one of the main goals of software projects.In order to provide a software project with the anticipated software quality,the prediction of software defects plays a vita...Developing successful software with no defects is one of the main goals of software projects.In order to provide a software project with the anticipated software quality,the prediction of software defects plays a vital role.Machine learning,and particularly deep learning,have been advocated for predicting software defects,however both suffer from inadequate accuracy,overfitting,and complicated structure.In this paper,we aim to address such issues in predicting software defects.We propose a novel structure of 1-Dimensional Convolutional Neural Network(1D-CNN),a deep learning architecture to extract useful knowledge,identifying and modelling the knowledge in the data sequence,reduce overfitting,and finally,predict whether the units of code are defects prone.We design large-scale empirical studies to reveal the proposed model’s effectiveness by comparing four established traditional machine learning baseline models and four state-of-the-art baselines in software defect prediction based on the NASA datasets.The experimental results demonstrate that in terms of f-measure,an optimal and modest 1DCNN with a dropout layer outperforms baseline and state-of-the-art models by 66.79%and 23.88%,respectively,in ways that minimize overfitting and improving prediction performance for software defects.According to the results,1D-CNN seems to be successful in predicting software defects and may be applied and adopted for a practical problem in software engineering.This,in turn,could lead to saving software development resources and producing more reliable software.展开更多
基金the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia,for funding this research work through Project Number RI-44-0214.
文摘Background:Sepsis,a potentially fatal inflammatory disease triggered by infection,carries significant healthimplications worldwide.Timely detection is crucial as sepsis can rapidly escalate if left undetected.Recentadvancements in deep learning(DL)offer powerful tools to address this challenge.Aim:Thus,this study proposeda hybrid CNNBDLSTM,a combination of a convolutional neural network(CNN)with a bi-directional long shorttermmemory(BDLSTM)model to predict sepsis onset.Implementing the proposed model provides a robustframework that capitalizes on the complementary strengths of both architectures,resulting in more accurate andtimelier predictions.Method:The sepsis prediction method proposed here utilizes temporal feature extraction todelineate six distinct time frames before the onset of sepsis.These time frames adhere to the sepsis-3 standardrequirement,which incorporates 12-h observation windows preceding sepsis onset.All models were trained usingthe Medical Information Mart for Intensive Care III(MIMIC-III)dataset,which sourced 61,522 patients with 40clinical variables obtained from the IoT medical environment.The confusion matrix,the area under the receiveroperating characteristic curve(AUCROC)curve,the accuracy,the precision,the F1-score,and the recall weredeployed to evaluate themodels.Result:The CNNBDLSTMmodel demonstrated superior performance comparedto the benchmark and other models,achieving an AUCROC of 99.74%and an accuracy of 99.15%one hour beforesepsis onset.These results indicate that the CNNBDLSTM model is highly effective in predicting sepsis onset,particularly within a close proximity of one hour.Implication:The results could assist practitioners in increasingthe potential survival of the patient one hour before sepsis onset.
基金funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University,through the Research Groups Program Grant no.(RGP-1443-0045).
文摘The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiments based on household income loss,as expressed on social media.However,limited research has been conducted in this domain using theLexDeep approach.This study aimed to explore social trend analytics usingLexDeep,which is a hybrid sentiment analysis technique,on Twitter to capturethe risk of household income loss during the COVID-19 pandemic.First,tweet data were collected using Twint with relevant keywords before(9 March2019 to 17 March 2020)and during(18 March 2020 to 21 August 2021)thepandemic.Subsequently,the tweets were annotated using VADER(lexiconbased)and fed into deep learning classifiers,and experiments were conductedusing several embeddings,namely simple embedding,Global Vectors,andWord2Vec,to classify the sentiments expressed in the tweets.The performanceof each LexDeep model was evaluated and compared with that of a supportvector machine(SVM).Finally,the unemployment rates before and duringCOVID-19 were analysed to gain insights into the differences in unemploymentpercentages through social media input and analysis.The resultsdemonstrated that all LexDeep models with simple embedding outperformedthe SVM.This confirmed the superiority of the proposed LexDeep modelover a classical machine learning classifier in performing sentiment analysistasks for domain-specific sentiments.In terms of the risk of income loss,the unemployment issue is highly politicised on both the regional and globalscales;thus,if a country cannot combat this issue,the global economy will alsobe affected.Future research should develop a utility maximisation algorithmfor household welfare evaluation,given the percentage risk of income lossowing to COVID-19.
文摘Developing successful software with no defects is one of the main goals of software projects.In order to provide a software project with the anticipated software quality,the prediction of software defects plays a vital role.Machine learning,and particularly deep learning,have been advocated for predicting software defects,however both suffer from inadequate accuracy,overfitting,and complicated structure.In this paper,we aim to address such issues in predicting software defects.We propose a novel structure of 1-Dimensional Convolutional Neural Network(1D-CNN),a deep learning architecture to extract useful knowledge,identifying and modelling the knowledge in the data sequence,reduce overfitting,and finally,predict whether the units of code are defects prone.We design large-scale empirical studies to reveal the proposed model’s effectiveness by comparing four established traditional machine learning baseline models and four state-of-the-art baselines in software defect prediction based on the NASA datasets.The experimental results demonstrate that in terms of f-measure,an optimal and modest 1DCNN with a dropout layer outperforms baseline and state-of-the-art models by 66.79%and 23.88%,respectively,in ways that minimize overfitting and improving prediction performance for software defects.According to the results,1D-CNN seems to be successful in predicting software defects and may be applied and adopted for a practical problem in software engineering.This,in turn,could lead to saving software development resources and producing more reliable software.