Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid ...Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.展开更多
A very simple, non-destructive, inexpensive and green strategy was applied for the simultaneous determination of ibu-profen (IBP) and paracetamol (PC) using transmission Fourier Transform Infrared (FTIR) spectroscopy ...A very simple, non-destructive, inexpensive and green strategy was applied for the simultaneous determination of ibu-profen (IBP) and paracetamol (PC) using transmission Fourier Transform Infrared (FTIR) spectroscopy in tablet formulations for routine quality control laboratories. For the determination of the active pharmaceutical ingredients (API), KBr pellets containing known amount of standards and samples were used for acquisition of the FTIR spectra. The partial least squares (PLS) calibration model was developed using the spectral region from 1781 - 1683 cm-1 for IBP and 1630 - 1530 cm-1 for PC. The excellent coefficients of determination (R2), 0.9999 and 0.9998 were achieved for IBP and PC, respectively. The accuracy of calibration model was also verified through root mean square error of cross validation (RMSECV) which was found to be 0.064. This work clearly shows the capability of transmission FTIR spectroscopy for assessment of exact quantity of API to control the quality of finished products as well as during processing in pharmaceutical industries without involvement of any solvent.展开更多
基金the National Centre of Excellence in Analytical Chemistry,University of Sindh,Jamshoro,Pakistan,for providing financial support to carry out this work.
文摘Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.
文摘A very simple, non-destructive, inexpensive and green strategy was applied for the simultaneous determination of ibu-profen (IBP) and paracetamol (PC) using transmission Fourier Transform Infrared (FTIR) spectroscopy in tablet formulations for routine quality control laboratories. For the determination of the active pharmaceutical ingredients (API), KBr pellets containing known amount of standards and samples were used for acquisition of the FTIR spectra. The partial least squares (PLS) calibration model was developed using the spectral region from 1781 - 1683 cm-1 for IBP and 1630 - 1530 cm-1 for PC. The excellent coefficients of determination (R2), 0.9999 and 0.9998 were achieved for IBP and PC, respectively. The accuracy of calibration model was also verified through root mean square error of cross validation (RMSECV) which was found to be 0.064. This work clearly shows the capability of transmission FTIR spectroscopy for assessment of exact quantity of API to control the quality of finished products as well as during processing in pharmaceutical industries without involvement of any solvent.