Image-guided needles are currently used for drug delivery in bodies, but the additional time associated with aligning and maintaining the needle’s position results in increased patient discomfort or risk of invasion ...Image-guided needles are currently used for drug delivery in bodies, but the additional time associated with aligning and maintaining the needle’s position results in increased patient discomfort or risk of invasion of the human body. In this paper, a needle guidance system using piezoelectric materials is designed and analyzed for precise drug delivery without damaging parts of the body and improving processing time. A piezoelectric generates an ultrasound wave that can propagate through different mediums, and a second piezoelectric crystal can receive that energy and convert it into voltage. A 1D real-time image represents the changes of the voltage induced in the double piezoelectric crystal. Extensive data analysis and visualization are done using different obstacles and location of the needle verified for other mediums. The presence of obstacles in between those crystals can be identified in the real-time grayscale image. The needle can reach its destination using this image information as directional guidance. This guided drug delivery improves patient recovery time and eliminates extra injuries that can be caused due to wrong needle injections, such as lumbar puncture-related nerve damage.展开更多
An open source high level synthesis fixed-to-floating and floating-to-fixed conversion tool is presented for embedded design, communication systems, and signal processing applications. Many systems use a fixed point n...An open source high level synthesis fixed-to-floating and floating-to-fixed conversion tool is presented for embedded design, communication systems, and signal processing applications. Many systems use a fixed point number system. Fixed point numbers often need to be converted to floating point numbers for higher accuracy, dynamic range, fixed-length transmission limitations or end user requirements. A similar conversion system is needed to convert floating point numbers to fixed point numbers due to the advantages that fixed point numbers offer when compared with floating point number systems, such as compact hardware, reduced verification time and design effort. The latest embedded and SoC designs use both number systems together to improve accuracy or reduce required hardware in the same design. The proposed open source design and verification tool converts fixed point numbers to floating point numbers, and floating point numbers to fixed point numbers using the IEEE-754 floating point number standard. This open source design tool generates HDL code and its test bench that can be implemented in FPGA and VLSI systems. The design can be compiled and simulated using open source Iverilog/GTKWave and verified using Octave. A high level synthesis tool and GUI are designed using C#. The proposed design tool can increase productivity by reducing the design and verification time, as well as reduce the development cost due to the open source nature of the design tool. The proposed design tool can be used as a standalone block generator or implemented into current designs to improve range, accuracy, and reduce the development cost. The generated design has been implemented on Xilinx FPGAs.展开更多
Embedded systems used in real-time applications require low power, less area and high computation speed. For digital signal processing, image processing and communication applications, data are often received at a con...Embedded systems used in real-time applications require low power, less area and high computation speed. For digital signal processing, image processing and communication applications, data are often received at a continuously high rate. The type of necessary arithmetic functions and matrix operations may vary greatly among different applications. The RTL-based design and verification of one or more of these functions could be time-consuming. Some High Level Synthesis tools reduce this design and verification time but may not be optimal or suitable for low power applications. The design tool proposed in this paper can improve the design time and reduce the verification process. The design tool offers a fast design and verification platform for important matrix operations. These operations range from simple addition to more complex matrix operations such as LU and QR factorizations. The proposed platform can improve design time by reducing verification cycle. This tool generates Verilog code and its testbench that can be realized in FPGA and VLSI systems. The designed system uses MATLAB-based verification and reporting.展开更多
The System-on-Chip’s increased complexity and shortened design cycle calls for innovation in design and validation. A high quality System-on-Chip creates distinction and position in the market, and validation is the ...The System-on-Chip’s increased complexity and shortened design cycle calls for innovation in design and validation. A high quality System-on-Chip creates distinction and position in the market, and validation is the key to a quality product. Validation consumes >60% of the product cycle. Therefore, validation should be carried out efficiently. Validation must be quantified to aid in determining its quality. Pre-silicon uses various coverage metrics for quantifying the validation. The available on-chip coverage logic limits the use of pre-silicon-like coverage metrics in post-silicon. Although on-chip coverage logic increases observability, it does not contribute to the functional logic;hence, they are controlled and limited. Discounting the need for the on-chip coverage logic, the question to be answered is whether or not these pre-silic-on coverage metrics applicable to post-silicon. We discuss the reasons for limited applicability of pre-silicon coverage metrics in post-silicon. This paper presents a unified SoC post-silicon coverage methodology centered on functional coverage metrics.展开更多
This paper addresses the challenges of System-on-Chip designs using High-Level Synthesis (HLS). HLS tools convert algorithms designed in C into hardware modules. This approach is a practical choice for developing comp...This paper addresses the challenges of System-on-Chip designs using High-Level Synthesis (HLS). HLS tools convert algorithms designed in C into hardware modules. This approach is a practical choice for developing complex applications. Nevertheless, certain hardware considerations are required when writing C applications for HLS tools. Hence, in order to demonstrate the fundamental hardware design concepts, a case studyis presented. Fast Fourier Transform (FFT) implementation in ANSI C is examined in order to explore the important design issues such as concurrency, data recurrences and memory accesses that need to be resolved before generating the hardware using HLS tools. There are additional language constraints that need to be addressed including use of pointers, recursion and floating point types.展开更多
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><...This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>展开更多
文摘Image-guided needles are currently used for drug delivery in bodies, but the additional time associated with aligning and maintaining the needle’s position results in increased patient discomfort or risk of invasion of the human body. In this paper, a needle guidance system using piezoelectric materials is designed and analyzed for precise drug delivery without damaging parts of the body and improving processing time. A piezoelectric generates an ultrasound wave that can propagate through different mediums, and a second piezoelectric crystal can receive that energy and convert it into voltage. A 1D real-time image represents the changes of the voltage induced in the double piezoelectric crystal. Extensive data analysis and visualization are done using different obstacles and location of the needle verified for other mediums. The presence of obstacles in between those crystals can be identified in the real-time grayscale image. The needle can reach its destination using this image information as directional guidance. This guided drug delivery improves patient recovery time and eliminates extra injuries that can be caused due to wrong needle injections, such as lumbar puncture-related nerve damage.
文摘An open source high level synthesis fixed-to-floating and floating-to-fixed conversion tool is presented for embedded design, communication systems, and signal processing applications. Many systems use a fixed point number system. Fixed point numbers often need to be converted to floating point numbers for higher accuracy, dynamic range, fixed-length transmission limitations or end user requirements. A similar conversion system is needed to convert floating point numbers to fixed point numbers due to the advantages that fixed point numbers offer when compared with floating point number systems, such as compact hardware, reduced verification time and design effort. The latest embedded and SoC designs use both number systems together to improve accuracy or reduce required hardware in the same design. The proposed open source design and verification tool converts fixed point numbers to floating point numbers, and floating point numbers to fixed point numbers using the IEEE-754 floating point number standard. This open source design tool generates HDL code and its test bench that can be implemented in FPGA and VLSI systems. The design can be compiled and simulated using open source Iverilog/GTKWave and verified using Octave. A high level synthesis tool and GUI are designed using C#. The proposed design tool can increase productivity by reducing the design and verification time, as well as reduce the development cost due to the open source nature of the design tool. The proposed design tool can be used as a standalone block generator or implemented into current designs to improve range, accuracy, and reduce the development cost. The generated design has been implemented on Xilinx FPGAs.
文摘Embedded systems used in real-time applications require low power, less area and high computation speed. For digital signal processing, image processing and communication applications, data are often received at a continuously high rate. The type of necessary arithmetic functions and matrix operations may vary greatly among different applications. The RTL-based design and verification of one or more of these functions could be time-consuming. Some High Level Synthesis tools reduce this design and verification time but may not be optimal or suitable for low power applications. The design tool proposed in this paper can improve the design time and reduce the verification process. The design tool offers a fast design and verification platform for important matrix operations. These operations range from simple addition to more complex matrix operations such as LU and QR factorizations. The proposed platform can improve design time by reducing verification cycle. This tool generates Verilog code and its testbench that can be realized in FPGA and VLSI systems. The designed system uses MATLAB-based verification and reporting.
文摘The System-on-Chip’s increased complexity and shortened design cycle calls for innovation in design and validation. A high quality System-on-Chip creates distinction and position in the market, and validation is the key to a quality product. Validation consumes >60% of the product cycle. Therefore, validation should be carried out efficiently. Validation must be quantified to aid in determining its quality. Pre-silicon uses various coverage metrics for quantifying the validation. The available on-chip coverage logic limits the use of pre-silicon-like coverage metrics in post-silicon. Although on-chip coverage logic increases observability, it does not contribute to the functional logic;hence, they are controlled and limited. Discounting the need for the on-chip coverage logic, the question to be answered is whether or not these pre-silic-on coverage metrics applicable to post-silicon. We discuss the reasons for limited applicability of pre-silicon coverage metrics in post-silicon. This paper presents a unified SoC post-silicon coverage methodology centered on functional coverage metrics.
文摘This paper addresses the challenges of System-on-Chip designs using High-Level Synthesis (HLS). HLS tools convert algorithms designed in C into hardware modules. This approach is a practical choice for developing complex applications. Nevertheless, certain hardware considerations are required when writing C applications for HLS tools. Hence, in order to demonstrate the fundamental hardware design concepts, a case studyis presented. Fast Fourier Transform (FFT) implementation in ANSI C is examined in order to explore the important design issues such as concurrency, data recurrences and memory accesses that need to be resolved before generating the hardware using HLS tools. There are additional language constraints that need to be addressed including use of pointers, recursion and floating point types.
文摘This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span>