Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w...Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.展开更多
There is no safe and effective standard method for glans penis augmentation. Furthermore, there has been scant research on glans penis augmentation due to a poor understanding of glans anatomy, technical difficulty, a...There is no safe and effective standard method for glans penis augmentation. Furthermore, there has been scant research on glans penis augmentation due to a poor understanding of glans anatomy, technical difficulty, and a lack of suitable substances for augmentation. Cross-linked dextran gel is a newly developed filler for soft-tissue augmentation. We evaluated the efficacy and safety of using a novel technique to inject cross-linked dextran gel for glans penis augmentation during a 24-week follow-up study. This prospective, single-arm, multicenter study enrolled twenty healthy adult men who underwent glans penis augmentation between June and August 2013. Cross-linked dextran gel was injected into the glans penis using a simple and easy technique. The sizes of the glans penis and individual satisfaction were assessed. Any adverse event was also reported. A total of 18 individuals were analyzed; two of them were lost to follow-up. The mean procedure time and injected volume were about 30 rain and 6.6 +- 0.9 ml, respectively. The mean surface areas of the glans at baseline and 24 weeks were 20.0 _+ 3.5 cm2 and 33.6 -+ 5.4 cm2, respectively, representing a mean increase of 68.7% _+ 14.0% (P 〈 0.001). Sixteen individuals (88.9%) were satisfied with the outcomes, and none were dissatisfied. There were no serious adverse events during the study. Cross-linked dextran gel injection for glans penis augmentation was easy and showed a significant augmentative effect on the glans penis, good durability, and was well tolerated without serious adverse events. Therefore, cross-linked dextran gel injection may be an effective, new technique for glans penis augmentation.展开更多
基金Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(Grant No.20214000000140,Graduate School of Convergence for Clean Energy Integrated Power Generation)Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2021R1A6C101A449)the National Research Foundation of Korea grant funded by the Ministry of Science and ICT(2021R1A2C1095139),Republic of Korea。
文摘Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.
文摘There is no safe and effective standard method for glans penis augmentation. Furthermore, there has been scant research on glans penis augmentation due to a poor understanding of glans anatomy, technical difficulty, and a lack of suitable substances for augmentation. Cross-linked dextran gel is a newly developed filler for soft-tissue augmentation. We evaluated the efficacy and safety of using a novel technique to inject cross-linked dextran gel for glans penis augmentation during a 24-week follow-up study. This prospective, single-arm, multicenter study enrolled twenty healthy adult men who underwent glans penis augmentation between June and August 2013. Cross-linked dextran gel was injected into the glans penis using a simple and easy technique. The sizes of the glans penis and individual satisfaction were assessed. Any adverse event was also reported. A total of 18 individuals were analyzed; two of them were lost to follow-up. The mean procedure time and injected volume were about 30 rain and 6.6 +- 0.9 ml, respectively. The mean surface areas of the glans at baseline and 24 weeks were 20.0 _+ 3.5 cm2 and 33.6 -+ 5.4 cm2, respectively, representing a mean increase of 68.7% _+ 14.0% (P 〈 0.001). Sixteen individuals (88.9%) were satisfied with the outcomes, and none were dissatisfied. There were no serious adverse events during the study. Cross-linked dextran gel injection for glans penis augmentation was easy and showed a significant augmentative effect on the glans penis, good durability, and was well tolerated without serious adverse events. Therefore, cross-linked dextran gel injection may be an effective, new technique for glans penis augmentation.