Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the developm...Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.展开更多
The study of topological phases of light underpins a promising paradigm for engineering disorder-immune compact photonic devices with unusual properties.Combined with an optical gain,topological photonic structures pr...The study of topological phases of light underpins a promising paradigm for engineering disorder-immune compact photonic devices with unusual properties.Combined with an optical gain,topological photonic structures provide a novel platform for micro-and nanoscale lasers,which could benefit from nontrivial band topology and spatially localized gap states.Here,we propose and demonstrate experimentally active nanophotonic topological cavities incorporating Ⅲ-Ⅴ semiconductor quantum wells as a gain medium in the structure.We observe room-temperature lasing with a narrow spectrum,high coherence,and threshold behaviour.The emitted beam hosts a singularity encoded by a triade cavity mode that resides in the bandgap of two interfaced valley-Hall periodic photonic lattices with opposite parity breaking.Our findings make a step towards topologically controlled ultrasmall light sources with nontrivial radiation characteristics.展开更多
Control of terahertz waves offers a profound platform for next-generation sensing,imaging,and information communications.However,all conventional terahertz components and systems suffer from bulky design,sensitivity t...Control of terahertz waves offers a profound platform for next-generation sensing,imaging,and information communications.However,all conventional terahertz components and systems suffer from bulky design,sensitivity to imperfections,and transmission loss.We propose and experimentally demonstrate onchip integration and miniaturization of topological devices,which may address many existing drawbacks of the terahertz technology.We design and fabricate topological devices based on valley-Hall photonic structures that can be employed for various integrated components of on-chip terahertz systems.We demonstrate valleylocked asymmetric energy flow and mode conversion with topological waveguide,multiport couplers,wave division,and whispering gallery mode resonators.Our devices are based on topological membrane metasurfaces,which are of great importance for developing on-chip photonics and bring many features into terahertz technology.展开更多
基金supported by the Australian Research Council(Grant No.DP210101292)the International Technology Center Indo-Pacific (ITC IPAC) via Army Research Office (contract FA520923C0023)。
文摘Nonlinear dielectric metasurfaces provide a promising approach to control and manipulate frequency conversion optical processes at the nanoscale,thus facilitating both advances in fundamental research and the development of new practical applications in photonics,lasing,and sensing.Here,we employ symmetry-broken metasurfaces made of centrosymmetric amorphous silicon for resonantly enhanced second-and third-order nonlinear optical response.Exploiting the rich physics of optical quasi-bound states in the continuum and guided mode resonances,we comprehensively study through rigorous numerical calculations the relative contribution of surface and bulk effects to second-harmonic generation(SHG)and the bulk contribution to third-harmonic generation(THG) from the meta-atoms.Next,we experimentally achieve optical resonances with high quality factors,which greatly boosts light-matter interaction,resulting in about 550 times SHG enhancement and nearly 5000-fold increase of THG.A good agreement between theoretical predictions and experimental measurements is observed.To gain deeper insights into the physics of the investigated nonlinear optical processes,we further numerically study the relation between nonlinear emission and the structural asymmetry of the metasurface and reveal that the generated harmonic signals arising from linear sharp resonances are highly dependent on the asymmetry of the meta-atoms.Our work suggests a fruitful strategy to enhance the harmonic generation and effectively control different orders of harmonics in all-dielectric metasurfaces,enabling the development of efficient active photonic nanodevices.
基金supported by the Australian Research Council(grants DE190100430 and DP200101168)the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(grant 2018R1A3A3000666).
文摘The study of topological phases of light underpins a promising paradigm for engineering disorder-immune compact photonic devices with unusual properties.Combined with an optical gain,topological photonic structures provide a novel platform for micro-and nanoscale lasers,which could benefit from nontrivial band topology and spatially localized gap states.Here,we propose and demonstrate experimentally active nanophotonic topological cavities incorporating Ⅲ-Ⅴ semiconductor quantum wells as a gain medium in the structure.We observe room-temperature lasing with a narrow spectrum,high coherence,and threshold behaviour.The emitted beam hosts a singularity encoded by a triade cavity mode that resides in the bandgap of two interfaced valley-Hall periodic photonic lattices with opposite parity breaking.Our findings make a step towards topologically controlled ultrasmall light sources with nontrivial radiation characteristics.
基金supported by the Australian Research Council(Grant Nos.DP200101168 and DP210101292)。
文摘Control of terahertz waves offers a profound platform for next-generation sensing,imaging,and information communications.However,all conventional terahertz components and systems suffer from bulky design,sensitivity to imperfections,and transmission loss.We propose and experimentally demonstrate onchip integration and miniaturization of topological devices,which may address many existing drawbacks of the terahertz technology.We design and fabricate topological devices based on valley-Hall photonic structures that can be employed for various integrated components of on-chip terahertz systems.We demonstrate valleylocked asymmetric energy flow and mode conversion with topological waveguide,multiport couplers,wave division,and whispering gallery mode resonators.Our devices are based on topological membrane metasurfaces,which are of great importance for developing on-chip photonics and bring many features into terahertz technology.